ACO Water Management:

Civils + Infrastructure

ACO Qmax®

ACO Qmax® - High capacity slot drainage system

Technical data

Introduction to the ACO Group

Throughout the world ACO branded drainage and surface water management systems are recognised for their innovative design, high quality manufacture, environmental excellence and industry leading performance.

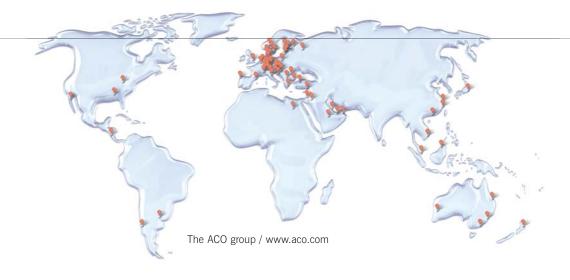
Today the ACO Group has a research and production base that reaches across four continents. This unmatched resource pioneers the development of solutions that are tailored to individual applications, meeting the need for high performance, sustainable products that deliver optimum value throughout their operational life.

ACO Technologies plc

ACO operates as ACO Technologies plc in the United Kingdom. Founded over 25 years ago, the company has grown quickly on a reputation for design innovation and customer service.

There are now 4 divisions within ACO Technologies that serve every sector of the construction industry, providing solutions for applications as diverse as rail, highways, airports, landscaping, retail, distribution centres and environmentally sensitive projects.

To help architects, designers and contractors meet the legal requirements that now tightly control the way surface water is managed, ACO has created its unique 'Surface Water Management Cycle' - Collect, Clean, Hold, Release the four core processes now required for the complete and sustainable management of surface water drainage.



Contents

Introduction to ACO Qmax®	4
ACO Qmax® system layout	6
ACO Qmax® channel features overview	8
ACO Qmax® edge rails and components overview	10
Project case studies	12
ACO Qmax® system overview	14
ACO Qmax® 225 system	15
ACO Qmax® 225 system and components	16
ACO Qmax® 225 hydraulic performance tables	20
ACO Qmax® 350 system	21
ACO Qmax® 350 system and components	22
ACO Qmax® 350 hydraulic performance tables	25
ACO Qmax® 225 and 350 access, outlet/inlet and silt chambers	26
ACO Qmax® 550 system	29
ACO Qmax® 550 system and components	30
ACO Qmax® 550 hydraulic performance tables	34
ACO Qmax® 700 system	35
ACO Qmax® 700 system and components	36
ACO Qmax® 700 hydraulic performance tables	40
ACO Qmax [®] 900 system	41
ACO Qmax® 900 system and components	42
ACO Qmax® 900 hydraulic performance tables	46
ACO Qmax® 550, 700 and 900 access and silt chambers	47
Controlling stormwater discharge	48
Designing an ACO Qmax® drainage system	50
Channel installation detail	52
Access chamber installation detail	54
Chemical resistance chart	56
Specification clauses and certification	57

Introduction to ACO Qmax®

The ACO Qmax® system provides optimum surface water drainage and attenuation for a wide range of infrastructure, industrial, hard landscaped and other SuDS applications.

What is ACO Qmax®

ACO Qmax® satisfies the demand for a versatile, high capacity slot drainage system for applications involving small to large catchment areas. For economical system design and installation, ACO Qmax® can cater for a wide range of applications to any load class.

ACO Qmax® is specifically designed to form an integral part of any modern, sustainable surface water management solution. The system maximises the hydraulic capacity available providing effective storage, attenuation, and eliminating carry over in stormwater conditions.

The ACO Qmax® system has five channel sizes ensuring greater system flexibility for engineers and designers to optimise scheme hydraulics.

In recognition of its innovative design, ACO Qmax® has received many accolades including Construction Product of the Year 2006 and The Queen's Award for Enterprise: Innovation in 2006.

The ACO Qmax® system

System features

- Available in these sizes: 225, 350, 550, 700 and 900
- ▶ The ACO Qmax® channel unit is 2m in length
- ▶ Simple connection between each channel run is provided by step and channel connectors
- Range of access chambers available
- ▶ Manufactured from recycled Medium Density Polyethylene (MDPE)
- ▶ ACO Qmax® is easy to handle and quick to install
- Unique patented inlet design provides a continuous pavement beam feature over the line of the channel
- Each size within the ACO Qmax® range is CE marked and certified to BS EN1433:2002
- Supports all Load Classes up to and including F 900
- ATec coating on all the ductile iron edge rails

System benefits

- Unobtrusive continuous slot drainage system
- Eliminates stormwater carry over
- ▶ Sealed system
- ▶ Effective silt management
- Meets environmental construction targets
- Improves onsite handling and installation rates
- > Strengthening the pavement installation and minimising the need for reinforcement
- Proven performance and durability
- ▶ Safe and secure installation
- ▶ Long service life in excess of 25 years

Why choose ACO Qmax®

SuDS

ACO Qmax® provides many solutions as part of a SuDS system allowing engineers and designers to combine the benefits of both "Hard" and "Soft" SuDS in order to achieve the key elements of quality, quantity and amenity.

When combined with the ACO Q-Brake Vortex flow control, it can regulate and control stormwater before it discharges into the ongoing watercourses or drainage

Discrete finish

To satisfy surface finishes and application requirements, ACO Qmax® is available with a range of discreet edge rail designs and materials.

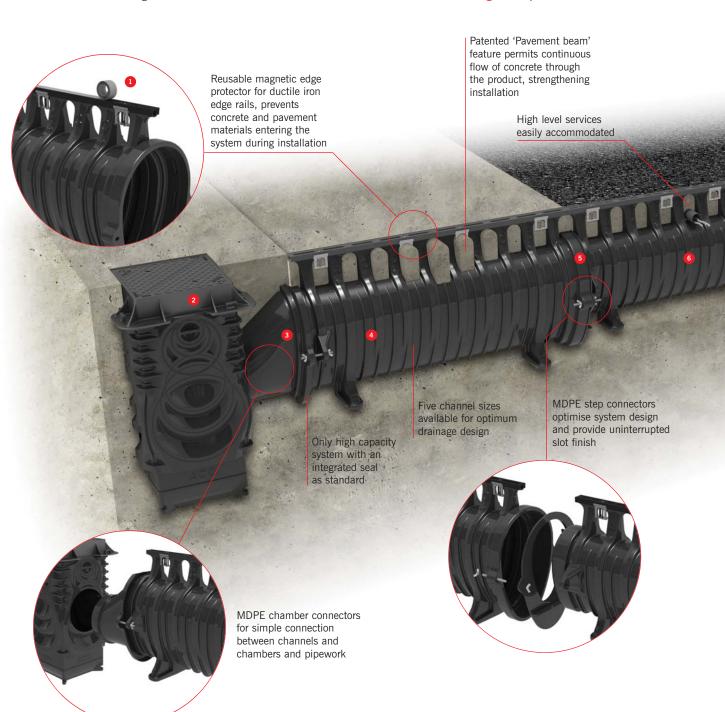
ACO Qmax® channels come complete with either high quality ATec coated ductile iron or hot dipped galvanised edge rails, which are suitable for all load classes in asphalt or concrete pavements

The edge rails are available in three different inlet slot designs: ACO Q-Flow, ACO Q-Guard, and for landscaped areas with block paviours or flags, the ACO Q-Slot galvanised steel edge rail provides a discreet, unobtrusive finish.

ACO Hydraulic Design Software

Register online for our free, secure online design software:

- ▶ All designs are securely stored and easily accessed online
- ▶ Data always up-to-date
- ▶ Proven calculation methodology - more accurate and efficient designs
- ▶ Flexible catchment design
- Integrated rainfall data
- Automated product optimisation
- ▶ PDF summary documents



Register Now - It's Free www.acodesign.co.uk

The layout diagram below illustrates the channels and components available within the ACO Qmax® range.

Key

- 1 Edge rail protector for ductile iron edge rails
- 2 ACO Qmax® access / silt chamber with solid cover and frame
- 3 ACO Qmax® 700 chamber connector
- 4 ACO Qmax® 700 with ACO Q-Flow ductile iron edge rail
- 5 ACO Qmax® 550 to 700 step connector
- 6 Qmax® 550 with ACO Q-Guard ductile iron edge rail
- 7 ACO Qmax® 550 chamber connector
- 3 ACO Qmax® access / silt chamber with slotted cover and frame
- ACO Qmax® 350 with ACO Q-Guard galvanised steel edge rail
- O ACO Qmax® access chamber with ACO Q-Slot recessed cover and frame
- ACO Qmax® 225 with ACO Q-Slot galvanised steel edge rail
- 12 End cap

Controlling stormwater discharge

If a controlled rate discharge is required, ACO Qmax® can be used in conjunction with the ACO Q-Brake Vortex flow control unit to regulate stormwater flows.

ACO Q-Brake Vortex provides superior hydraulic performance in comparison to traditional flow control systems and permits more flow at lower heads, reducing storage volume requirements and lowering cost.

For more information on ACO Q-Brake Vortex, see page 48.

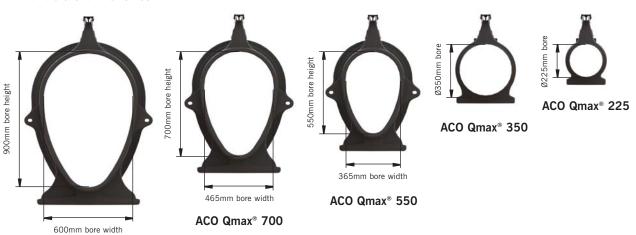
ACO Qmax® channels are available as standard with three different edge rail details for specific applications Reinforcement support aids installation

Patented 'Pavement beam' feature permits continuous flow of concrete through the product, for strong and cost effective installation

Simple push fit channel connection detail for easy edge rail alignment

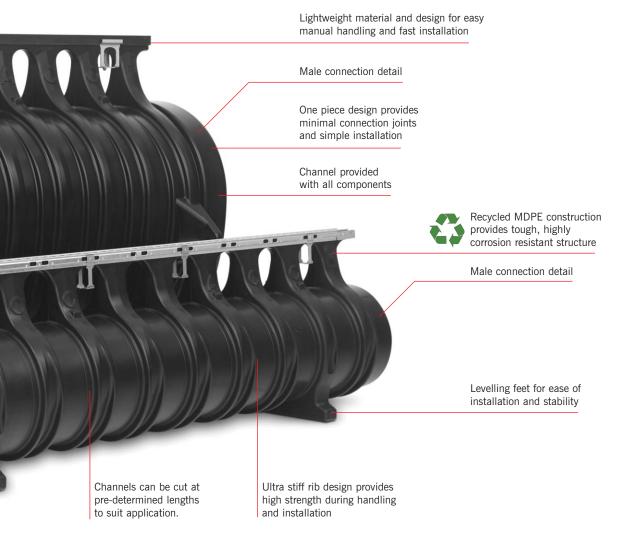
ACO Qmax® 550, 700 and 900 channels are provided with wingnut connection

Female connection detail


Integrated channel seal for quick and easy watertight connections*

CE marked and fully certified to BS EN 1433:2002 for all Load Classes up to and including F 900

Available channel sizes:


ACO Qmax® 900

Female connection detail

LOAD CLASSES

A 15

Pedestrian, cycleways, minimally trafficked areas (light domestic vehicles only).

D 400

Public highways, parking areas for all types of vehicles, distribution yards.

B 125

Pedestrian precincts, light vehicles, private car parks and drives.

E 600

Industrial areas, heavy wheel loads, slow-moving HGV's and forklifts, service stations.

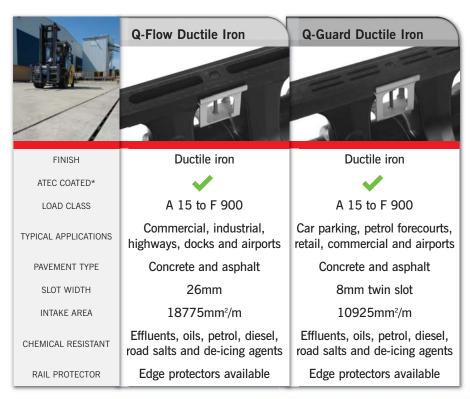
C 250

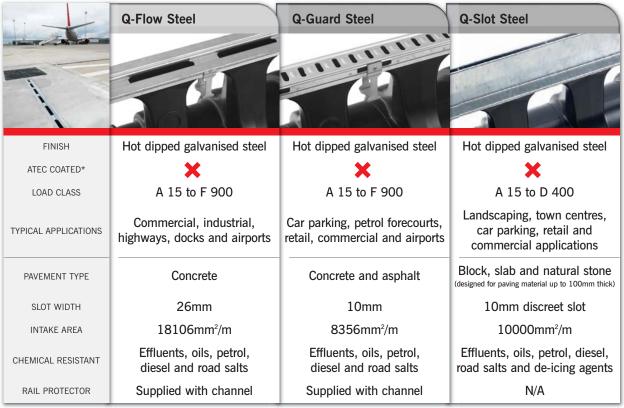
Parking areas, service stations (cars) and slow-moving light commercial vehicles.

F 900

Airport runways, very heavy industrial and military installations, service yards and lorry parks.

^{*} ACO Qmax* channels are tested to confirm compliance with the watertightness requirements of BS EN 1433 when filled with water to the top of the channel bore. See watertightness note on page 52 for more information.


ACO Qmax® edge rails


Making the right edge rail selection

ACO Qmax® edge rails are available in five different finishes, and are suitable for all channel sizes.

To summarise the available options, the product selector below displays key features for each of the different profiles and finishes available.

ACO Qmax® components

End caps

Three types of end caps are available:

- 1. A multifunctional (closing/outlet/inlet) end cap for ACO Qmax® 225 and 350 systems
- 2. A closing end cap for ACO Qmax® 550, 700 and 900 systems
- 3. A blanking end cap to suit cut channel for ACO Qmax® 550, 700 and 900 systems

Functions and features are included in the relevant product chapters.

Step connectors

Three step connectors are available to provide connection between:

- 1. ACO Qmax® 225 to 350 systems
- 2. ACO Qmax® 550 to 700 systems
- 3. ACO Qmax® 700 to 900 systems

Functions and features are included in the relevant product chapters.

Chamber connectors

Three chamber connectors are available for:

- 1. ACO Qmax® 550 system
- 2. ACO Qmax® 700 system
- 3. ACO Qmax® 900 system

Functions and features are included in the relevant product chapters.

Multifunctional end cap for 225 and 350 systems

225 to 350 step connector

Chamber connector for 550, 700 & 900 systems

Closing end cap for 550, 700 and 900 systems

550 to 700 / 700 to 900 step connector

Blanking end cap for 550, 700 and 900 systems

ACO Qmax® project case studies

Since its launch, the many benefits of ACO Qmax® have helped architects, engineers and contractors realise some of the country's most ambitious, groundbreaking and high profile projects.

In differing applications with widely varying objectives, the ACO Water Management Design Services Team has played a key partnering role, ensuring each finished system not only met those objectives but added wider value.

The next two pages demonstrate how ACO Qmax® has provided efficient and cost effective high capacity drainage and attenuation across a diverse range of applications.

Project requirement: Minimal disruption

Belfast International Airport Refurbishment


Client:

Abertis Airports

Design engineer: Doran Consulting

Contractor:

Whitemountain

Keeping disruption to a minimum was essential as Belfast International Airport undertook a major extension and refurbishment of its aircraft handling aprons. ACO Water Management's Design Services conducted trials that proved to the Belfast team that ACO Qmax® set in a polycarbonate fibre reinforced concrete mix would not only meet the specified cure time but also deliver Load Class F900 performance. All four sizes of ACO Qmax® have been installed across the project forming the principal part of a wider SuDS system handling surface water from all the areas of hardstanding.

Project requirement: Value and Versatility

ProLogis Distribution Warehouse, North Kettering Business Park

Architect:

Stephen George & Partners

Contractor:

Winvic

The transformation of the former quarry site into five state-of-the-art logistics centres ranging from 50,000 to 700,000 sq ft required extensive earthworks and remediation before superstructure works could commence. By exploiting the handling and Value Engineering benefits of Qmax, Winvic were able to complete the critical groundworks phases within extremely tight schedules, using the Load Class versatility of Qmax® to provide surface water management in all the trafficked areas including trailer handling yards, access roads and car parks.

Designing the scheme

ACO has been a pioneer of 'Value Engineering' – a revolutionary approach to design and construction.

Through ACO Water Management's Design Services Team, any proposal can be Value Engineered to identify how its performance can be optimised with minimal use of materials. Powerful CAD systems produce full hydraulic calculations and installation schedules that enable all on-site work to be

completed efficiently. It is a unique, comprehensive service that is provided free of charge.

ACO Qmax* has played a key role in realising the benefits of Value Engineering. Its high carrying capacity, ability to attenuate stormwater flows, ease of installation, and design versatility allow extensive conventional drainage networks to be greatly simplified, significantly reducing installation and whole lifetime

costs.

Project requirement: Total SuDS solution

Newcastle Recycling Centre

Client:

J & J Stanley Ltd

Engineer:

G & B Civil Engineering

The refurbishment of J & J Stanley's recycling centre has benefited from a SuDS scheme created using products from every process within ACO's System Chain - Collect, Clean, Hold, Release. By integrating the high attenuating capacity of ACO Qmax® with an ACO Q-Ceptor, StormTank and a Q-Brake Vortex, the scheme's overall performance has been designed to balance the operating conditions of the facility with the discharge limits for the site — a Value Engineering exercise that has reduced total cost and installation time and minimised ongoing maintenance requirements.

Project requirement: Self contained SuDS

Mansfield Brick Manufacturing Facility

Client:

Mansfield Brick

Engineer:

MHI Fellows Hallat

Contractor:

RG Carter

All run-off generated from the new eight acres of hardstanding created for Mansfield Brick's new manufacturing facility is collected, cleaned and returned safely to ground within the curtilage of the site. Meeting the project planning requirements, no connection to the main sewer network has been made. By utilising the high attenuating capacity of over 1000 metres of ACO Qmax®, consulting engineers MHI were able to avoid having to provide additional underground stormwater storage — a benefit that greatly simplified the overall design and significantly reduced installation time and costs.

ACO Qmax® system overview

Making the right product selection

ACO Qmax $^{\circ}$ is available in five channel sizes: 225, 350, 550, 700 and 900.

To summarise the available options, the product selector below displays key features for each of the profiles and unit depths available.

Once product selection has been made based on the features required, the table will direct you to the appropriate page.

ACO Qmax® is:

- Available in five channel sizes
- ▶ Supplied in 2m lengths
- Manufactured from tough, recycled, highly corrosion resistant MDPE
- CE marked and fully certified to BS EN 1433:2002, A 15 – F 900

14

CATCHMENT AREA
*EXAMPLE RUN BASED ON 100m LENGTH
LAID LEVEL AT 50mm/hr RAINFALL

The ACO Qmax® 225 channel is manufactured from recycled MDPE which is lightweight, chemically resistant and extremely robust. Its circular bore, sealed push fit channel connections and unique patented inlet design ensure drainage inverts are kept to a minimum, installation rates are maximised and the product is fully integrated within the pavement detail providing long term dependable performance.

ACO Qmax® 225 channels are available with the following components:

- · Outlet and closing end cap
- Qmax® 225-350 step connector
- Access, outlet / inlet and silt chambers
- Installation edge rail protectors
- Q-Brake Vortex flow controls

225

Unit size

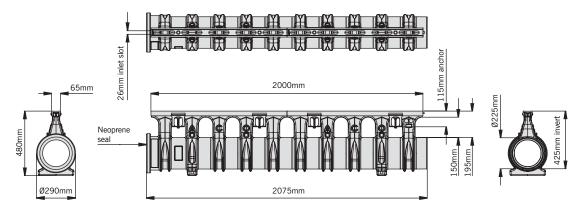
Hydraulic capacity

1500m^{2*}

Catchment area

0.0398m³/m Attenuation capacity

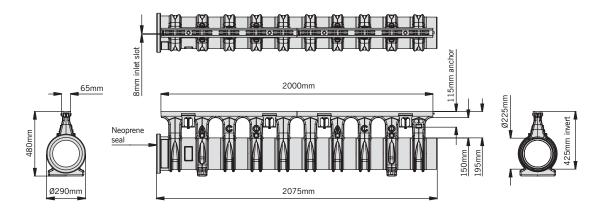
Access/outlet/inlet/ silt chambers


Q-Slot access chamber, cover and frame

*Example run based on 100m length laid level at 50mm/hr

15

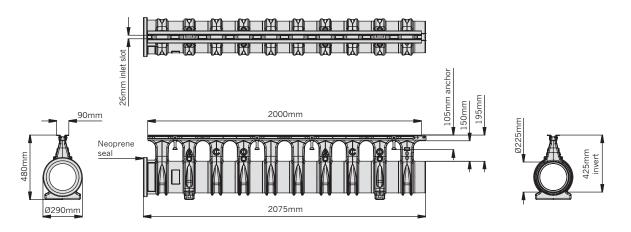
ACO Qmax® 225 with ACO Q-Flow ductile iron edge rail


			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32800	ACO Qmax® 225 channel assembly complete	2000	Ø290	480	26	24
	with ACO Q-Flow ductile iron edge rail					

ACO Qmax® 225 with ACO Q-Flow ductile iron edge rail

ACO Qmax® 225 with ACO Q-Guard ductile iron edge rail

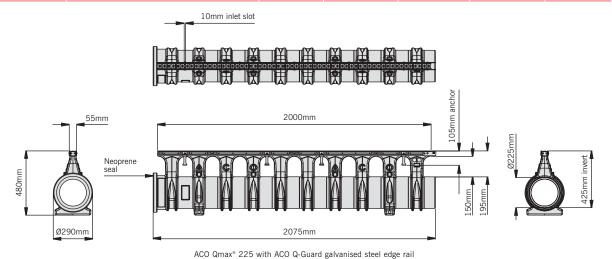
Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Slot width (mm)	Weight (kg)
32801	ACO Qmax® 225 channel assembly complete	2000	Ø290	480	2 x 8	25
	with ACO Q-Guard ductile iron edge rail					



ACO Qmax® 225 with ACO Q-Guard ductile iron edge rail

ACO Qmax® 225

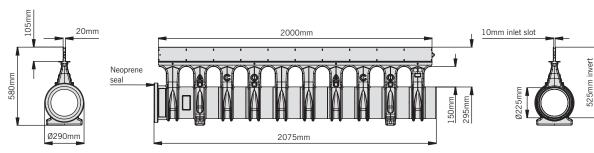
ACO Qmax® 225 with ACO Q-Flow galvanised steel edge rail


			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32802	ACO Qmax® 225 channel assembly complete	2000	Ø290	480	26	17.8
	with ACO Q-Flow galvanised steel edge rail					

ACO Qmax® 225 with ACO Q-Flow galvanised steel edge rail

ACO Qmax® 225 with ACO Q-Guard galvanised steel edge rail

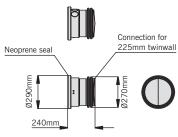
			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32803	ACO Qmax® 225 channel assembly complete	2000	Ø290	480	10	15.3
	with ACO Q-Guard galvanised steel edge rail					



Note: For details regarding the access/outlet/inlet/silt chambers for use with this system please refer to page 26.

ACO Qmax® 225 with ACO Q-Slot galvanised steel edge rail

			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32804	ACO Qmax® 225 channel assembly complete	2000	Ø290	580	10	22.9
	with ACO Q-Slot galvanised steel edge rail					



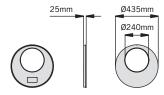
ACO Qmax® 225 with ACO Q-Slot galvanised steel edge rail

ACO Qmax® 225 multifunctional end cap (closing/outlet/inlet)

			Width overall	Depth overall	
Product code	Description	Length (mm)	(mm)	(mm)	Weight (kg)
42221	ACO Qmax® 225 multifunctional end cap	240	Ø290	Ø290	1.4

ACO Qmax® 225 multifunctional end cap

ACO Qmax® 225 multifunctional end cap has the following functions:


- Male and female closing end cap
- Male and female inlet/outlet end cap for connection to Ø225mm twinwall pipe
- Simple fitting

Installation instructions supplied

ACO Qmax® 225

ACO Qmax® 225 to 350 step connector

Product code	Description	Length (mm)	Width overall (mm)	Depth overall	Weight (kg)
1 Todact code	Description	Length (IIII)	(11111)	(11111)	Weight (kg/
32880	ACO Qmax® 225 to 350 step connector (M to F)	25	Ø435	-	0.8

ACO Qmax® 225 to 350 step connector

ACO Qmax $^{\circ}$ 225 to 350 step connector has the following functions:

- ► Enables step fall installations of ACO Qmax® 225 and ACO Qmax® 350 channels
- For use between ACO Qmax® 225 male and ACO Qmax® 350 female channel connections
- Simple fitting

Installation instructions supplied

ACO Qmax® ductile iron edge rail protector

			Width overall	Depth overall	
Product code	Description	Length (m)	(mm)	(mm)	Weight (kg)
32854	ACO Qmax® ductile iron edge rail protector 15.25m roll	15.25	65	1.5	5.0

ACO Qmax® ductile iron edge rail protector has the following functions:

- Used to cover and protect rails from debris during installation
- Simple fitting
- Can be reused

ACO Qmax® 225 hydraulic performance tables

Hydraulic capacities

The table opposite shows the maximum capacity of the unit, assuming uniform lateral inflow. The capacity will depend on the length of unit to the outlet and on any slope along the unit.

Q (I/s) is the maximum total flow that the channel can carry.

q (l/s/m) is the maximum possible lateral inflow.

A (m²) is the maximum area that can be drained and will depend on the design rainfall intensity chosen. The tabulated areas are for a rainfall intensity of 50mm/h (0.014 l/s/m²).

At other rainfall intensities, the area can be determined by proportion, e.g. at 75mm/h, the maximum area drained will be the tabulated area x 50/75.

ACO Water Management Design Services Team

Please contact the ACO Water Management Design Services Team on 01462 816666 for advice on channels with non-uniform inflow, or channels receiving point inflows at the end or at intermediate locations. The ACO Water Management Design Services Team will be pleased to assist with any technical queries, scheme designs or parts schedules.

Designing a drainage system

An example design method is provided on page 50 to help determine your drainage requirements.

This example will enable you to use the hydraulic performance tables on this page.

ACO Qmax® 225 channels

Slope	Slope 0%			0.5%			1%		
Length to Outlet (m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)
50	24.0	0.48	1728	44.5	0.89	3204	56.0	1.12	4032
100	21.0	0.21	1512	48.5	0.49	3492	63.0	0.63	4536
200	18.0	0.09	1296	51.6	0.26	3715	66.0	0.33	4752
300	15.6	0.05	1123	52.8	0.18	3802	66.3	0.22	4774
400	14.0	0.04	1008	53.6	0.13	3859	66.3	0.17	4774
500	13.0	0.03	936	54.0	0.11	3888	66.3	0.13	4774

20

The ACO Qmax® 350 channel is manufactured from recycled MDPE which is lightweight, chemically resistant and extremely robust. Its circular bore, sealed push fit channel connections and unique patented inlet design ensure drainage inverts are kept to a minimum, installation rates are maximised and the product is fully integrated within the pavement detail providing long term dependable performance.

ACO Qmax® 350 channels are available with the following components:

- Outlet/inlet and closing end cap
- Access, outlet / inlet and silt chambers
- Installation edge rail protectors
- Q-Brake Vortex flow controls

350

Unit size

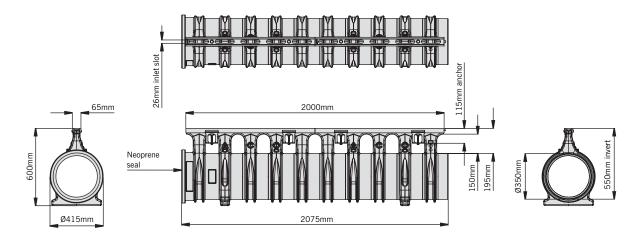
Hydraulic capacity

5200m^{2*}

Catchment area

0.0962m³/m Attenuation capacity

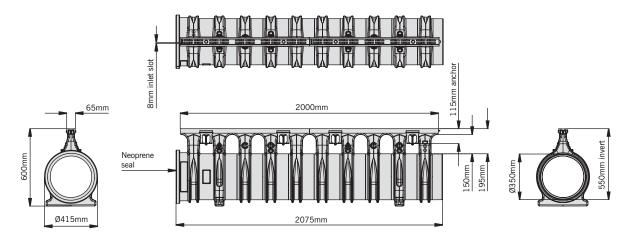
Access/outlet/inlet/ silt chambers


Q-Slot access chamber, cover and frame

*Example run based on 100m length laid level at 50mm/hr rainfall

21

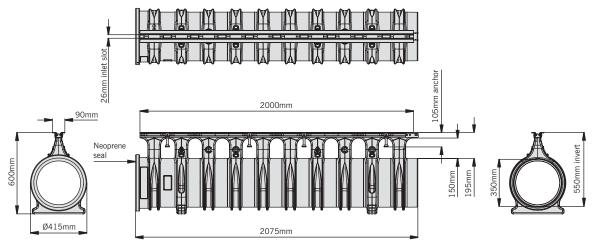
ACO Qmax® 350 with ACO Q-Flow ductile iron edge rail


			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32810	ACO Qmax® 350 channel assembly complete	2000	Ø415	600	26	28.3
	with ACO Q-Flow ductile iron edge rail					

ACO Qmax® 350 with ACO Q-Flow ductile iron edge rail

ACO Qmax® 350 with ACO Q-Guard ductile iron edge rail

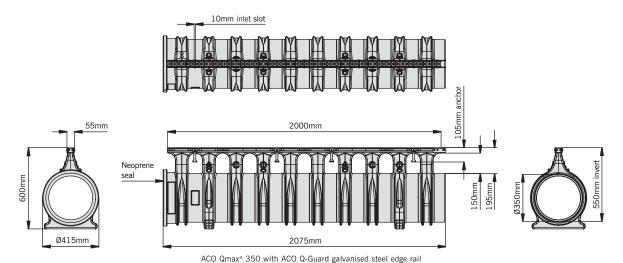
			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32811	ACO Qmax® 350 channel assembly complete	2000	Ø415	600	2 x 8	29.3
	with ACO Q-Guard ductile iron edge rail					



ACO Qmax® 350 with ACO Q-Guard ductile iron edge rail

ACO Qmax® 350

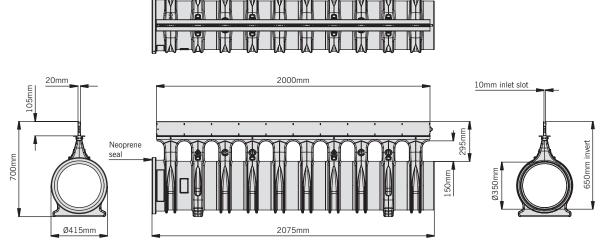
ACO Qmax® 350 with ACO Q-Flow galvanised steel edge rail


			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32812	ACO Qmax® 350 channel assembly complete	2000	Ø415	600	26	24.0
	with ACO Q-Flow galvanised steel edge rail					

ACO Qmax® 350 with ACO Q-Flow galvanised steel edge rail

ACO Qmax® 350 with ACO Q-Guard galvanised steel edge rail

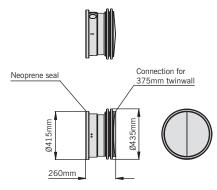
			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32813	ACO Qmax® 350 channel assembly complete	2000	Ø415	600	10	21.5
	with ACO Q-Guard galvanised steel edge rail					



Note: For details regarding the access/outlet/inlet/silt chambers for use with this system please refer to page 26.

ACO Qmax® 350

ACO Qmax® 350 with ACO Q-Slot galvanised steel edge rail


Product code	Description		Width overall (mm)	Depth overall (mm)	Slot width (mm)	Weight (kg)
32814	ACO Qmax® 350 channel assembly complete	2000	Ø415	700	10	29.1
	with ACO Q-Slot galvanised steel edge rail					

ACO Qmax® 350 with ACO Q-Slot galvanised steel edge rail

ACO Qmax® 350 multifunctional end cap (closing/outlet/inlet)

			Width overall	Depth overall	
Product code	Description	Length (mm)	(mm)	(mm)	Weight (kg)
42351	ACO Qmax® 350 multifunctional end cap	260	Ø415	Ø415	2.6

ACO Qmax® 350 multifunctional end cap

ACO Qmax® 350 multifunctional end cap has the following functions:

- Male and female closing end cap
- Male and female inlet/outlet end cap for connection to 375mm twinwall pipe
- Simple fitting

Installation instructions supplied

ACO Qmax® ductile iron edge rail protector

			Width overall	Depth overall	
Product code	Description	Length (m)	(mm)	(mm)	Weight (kg)
32854	ACO Qmax® ductile iron edge rail protector 15.25m roll	15.25	65	1.5	5.0

ACO Qmax® ductile iron edge rail protector has the following functions:

- Used to cover and protect rails from debris during installation
- Simple fitting
- Can be reused

Note: For details regarding the access/outlet/inlet/silt chambers for use with this system please refer to page 26.

ACO Qmax® 350 hydraulic performance tables

Hydraulic capacities

The table opposite shows the maximum capacity of the unit, assuming uniform lateral inflow. The capacity will depend on the length of unit to the outlet and on any slope along the unit.

 $\ensuremath{\mathsf{Q}}$ (I/s) is the maximum total flow that the channel can carry.

q (l/s/m) is the maximum possible lateral inflow.

A (m²) is the maximum area that can be drained and will depend on the design rainfall intensity chosen. The tabulated areas are for a rainfall intensity of 50mm/h (0.014 l/s/m²).

At other rainfall intensities, the area can be determined by proportion, e.g. at 75mm/h, the maximum area drained will be the tabulated area x 50/75.

ACO Water Management Design Services Team

Please contact the ACO Water Management Design Services Team on 01462 816666 for advice on channels with non-uniform inflow, or channels receiving point inflows at the end or at intermediate locations. The ACO Water Management Design Services Team will be pleased to assist with any technical queries, scheme designs or parts schedules.

Designing a drainage system

An example design method is provided on page 50 to help determine your drainage requirements.

This example will enable you to use the hydraulic performance tables on this page.

ACO Qmax® 350 channels

Slope	0%			0.5%			1%		
Length to Outlet (m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)
50	77.5	1.55	5580	127.5	2.55	9180	158.0	3.16	11376
100	71.6	0.72	5155	143.0	1.43	10296	182.0	1.82	13104
200	62.0	0.31	4464	156.0	0.78	11232	200.0	1.00	14400
300	55.5	0.19	3996	162.3	0.54	11686	210.0	0.70	15120
400	50.4	0.13	3629	166.0	0.42	11952	215.2	0.54	15494
500	47.5	0.10	3420	168.5	0.34	12132	217.5	0.44	15660
600	43.8	0.07	3150	170.0	0.28	12240	218.3	0.36	15720
700	42.0	0.06	3024	170.3	0.24	12260	218.6	0.31	15740
700	42.0	0.06	3024	170.3	0.24	12260	218.6	0.31	15740

ACO Qmax* 225 & 350 access, outlet/inlet and silt chambers provide a compact and economical method of gaining access to the channel system for maintenance and cleaning, connections to traditional underground drainage networks, or silt management.

These chambers are specifically designed for use with ACO Qmax* 225 and 350 channels and allow 4-way channel connections to be made for simple directional changes and optimised scheme designs.

ACO Qmax® outlet/inlet and silt chambers provide outlet pipe connection to 160mm PVC-U, 200mm, 225mm and 300mm twinwall or clay pipe work. They also allow 110mm PVC-U inlet connections to be made, reducing the need for additional underground pipe work.

ACO Qmax® access, outlet/inlet and silt chambers are manufactured from MDPE which is lightweight, tough and chemically resistant.

Cover and frame options

The chambers come complete with a ductile iron slotted cover and frame available in either a lockable D 400 or hinged F 900 versions. An ACO Q-Slot D 400 ductile iron galvanised recessed cover and frame for use with up to 100mm block paving, slab and natural stone is also available

All materials used in the construction of ACO Qmax® chambers, covers and frames contain high levels of recycled materials and are themselves recyclable at the end of their life.

2/

ACO Qmax® 225 and 350 access, outlet/inlet and silt chambers

ACO Qmax® 225 and 350 channel access, outlet/inlet and silt chambers with slotted cover and frame

Product		Length	Width overall	Depth overall	Slot width	Weight
code	Description	(mm)	(mm)	(mm)	(mm)	(kg)
32970	Access chamber with D 400 slotted cover and frame	565	565	640	10	48
32971	Access chamber with F 900 slotted cover and frame	660	660	640	19	77.5
32972	Outlet/inlet chamber with D 400 slotted cover and frame	565	565	1095	10	52
32973	Outlet/inlet chamber with F 900 slotted cover and frame	660	660	1095	19	81.5
32974	Outlet/inlet/Silt chamber with D 400 slotted cover and frame	565	565	1600	10	60
32975	Outlet/inlet/Silt chamber with F 900 slotted cover and frame	660	660	1600	19	89.5

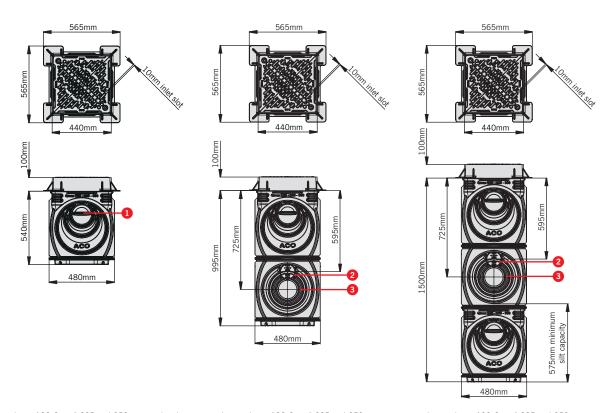
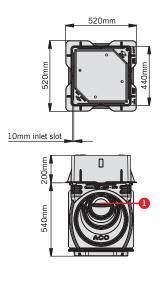
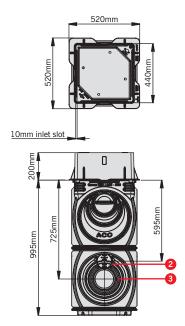


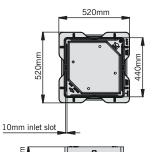
Image shows ACO Qmax* 225 and 350 access chamber with D 400 slotted cover and frame. Also available in Load Class F 900.

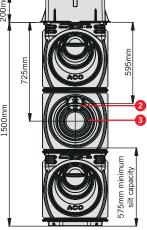
Image shows ACO Qmax* 225 and 350 access/outlet/inlet chamber with D 400 slotted cover and frame. Also available in Load Class F 900.

Image shows ACO Qmax* 225 and 350 access/outlet/inlet/silt chamber with D 400 slotted cover and frame. Also available in Load Class F 900.


- 1 225 & 350 channel connection
- 2 110mm PVC-U inlet connection
- 3 160mm PVC-U, 200mm, 225mm and 300mm twinwall or clay outlet connection


Maximum outlet capacity (assuming water level to the crown of the channel bore)


160mm	200mm	225mm	300mm
45 l/s	71 l/s	90 l/s	159 l/s


ACO Qmax® 225 and 350 channel access, outlet/inlet and silt chambers with ACO Q-Slot cover and frame

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Slot width (mm)	Weight (kg)
32976	Access chamber with D 400 ACO Q-Slot recessed cover and frame	520	520	740	10	55.5
32977	Outlet/inlet chamber with D 400 ACO Q-Slot recessed cover and frame	520	520	1195	10	59.5
32978	Outlet/inlet/silt chamber with D 400 ACO Q-Slot recessed cover and frame	520	520	1700	10	67.5

ACO Qmax® 225 and 350 access chamber with D 400 ACO Q-Slot recessed cover and frame.

ACO Qmax® 225 and 350 outlet/inlet chamber with D 400 ACO Q-Slot recessed cover and frame.

ACO Qmax® 225 and 350 outlet/inlet/silt chamber with D 400 ACO Q-Slot recessed cover and frame.

- 1 225 & 350 channel connection
- 2 110mm PVC-U inlet connection
- 3 160mm PVC-U, 200mm, 225mm and 300mm twinwall or clay outlet connection

Maximum outlet capacity (assuming water level to the crown of the channel bore)

160mm	200mm	225mm	300mm
45 l/s	71 l/s	90 l/s	159 l/s

28

ACO Qmax® 550

The ACO Qmax® 550 channel is manufactured from recycled MDPE which is lightweight, chemically resistant and extremely robust. Its ovoid High-Flow bore, sealed push fit channel connections and unique patented inlet design ensure efficient drainage even at low hydraulic flows and promote self cleansing. Installation rates are maximised and the product is fully integrated within the pavement detail providing long term dependable performance. The increased hydraulic capacity of the ACO Qmax® 550 channel makes it ideal for larger catchments and can eliminate the need for additional carrier drains and pipework.

ACO Qmax® 550 channels are available with the following components:

- Outlet, closing and blanking end caps
- 550-700 step connector
- · Access and silt chambers
- Installation edge rail protectors
- · Q-Brake Vortex flow controls

550 Unit size

(a)

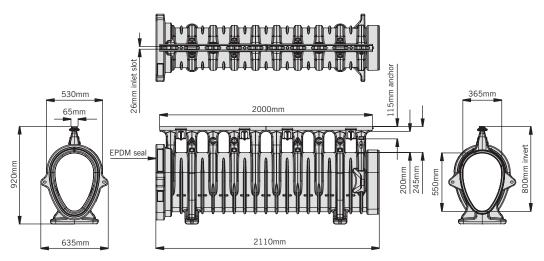
Hydraulic capacity

8400m^{2*}

Catchment area

0.1544m³/m Attenuation capacity

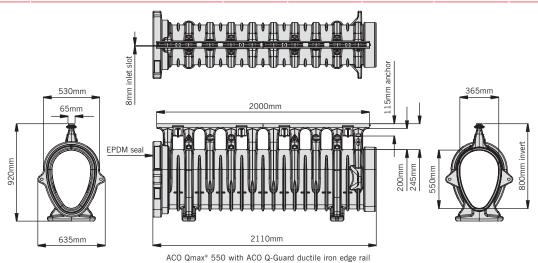
Access/silt chambers


Q-Slot cover and frame

*Example run based on 100m length laid level at 50mm/hr rainfall

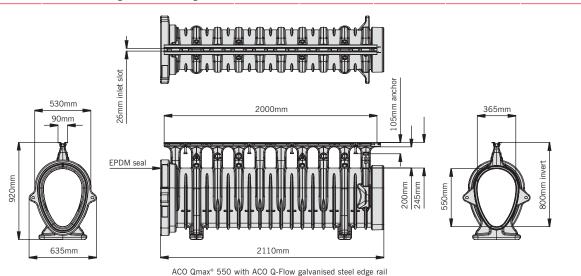
29

ACO Qmax® 550 with ACO Q-Flow ductile iron edge rail

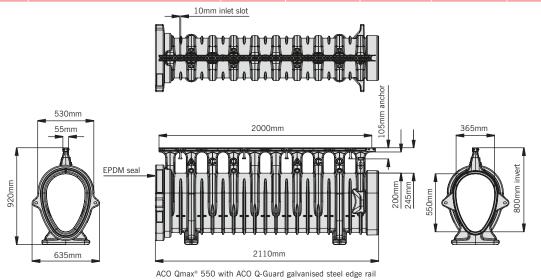

			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32820	ACO Qmax® 550 channel assembly complete	2000	635	920	26	44
	with ACO Q-Flow ductile iron edge rail					

ACO Qmax® 550 with ACO Q-Flow ductile iron edge rail

ACO Qmax® 550 with ACO Q-Guard ductile iron edge rail


			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32821	ACO Qmax® 550 channel assembly complete	2000	635	920	2 x 8	45
	with ACO Q-Guard ductile iron edge rail					

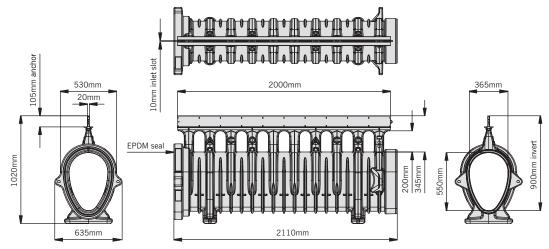
ACO Qmax® 550


ACO Qmax® 550 with ACO Q-Flow galvanised steel edge rail

			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32822	ACO Qmax® 550 channel assembly complete	2000	635	920	26	35.6
	with ACO Q-Flow galvanised steel edge rail					

ACO Qmax® 550 with ACO Q-Guard galvanised steel edge rail

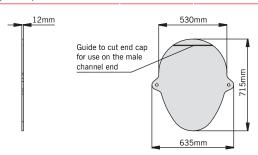
			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32823	ACO Qmax® 550 channel assembly complete	2000	635	920	10	33.1
	with ACO Q-Guard galvanised steel edge rail					



Note: For details regarding the access/silt chambers for use with this system please refer to page 47.

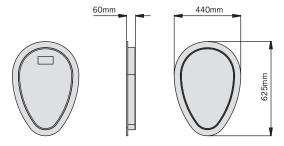
ACO Qmax® 550

ACO Qmax® 550 with ACO Q-Slot galvanised steel edge rail


			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32824	ACO Qmax® 550 channel assembly complete	2000	635	1020	10	40.7
	with ACO Q-Slot galvanised steel edge rail					

ACO Qmax® 550 with ACO Q-Slot galvanised steel edge rail

ACO Qmax® 550 closing end cap


			Width overall	Depth overall	
Product code	Description	Length (mm)	(mm)	(mm)	Weight (kg)
32825	ACO Qmax® 550 closing end cap	635	12	715	3.5

ACO Qmax® 550 closing end cap

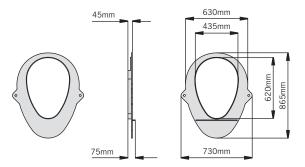
ACO Qmax® 550 blanking end cap

			Width overall	Depth overall	
Product code	Description	Length (mm)	(mm)	(mm)	Weight (kg)
32886	ACO Qmax® 550 blanking end cap	440	60	625	2.1

ACO Qmax® 550 blanking end cap

ACO Qmax® 550 blanking end cap has the following functions:

- Enables cut channels to be capped off if cut to length during installation
- ▶ Simple fitting


Installation instructions supplied

Note: For details regarding the access/silt chambers for use with this system please refer to page 47.

ACO Qmax® 550

ACO Qmax® 550 to 700 step connector

			Width overall	Depth overall	
Product code	Description	Length (mm)	(mm)	(mm)	Weight (kg)
32882	ACO Qmax® 550 to 700 step connector (M to F)	730	75	865	2.5

ACO Qmax® 550 to 700 step connector

ACO Qmax $^{\circ}$ 550 to 700 step connector has the following functions:

- ► Enables step fall installations of ACO Qmax® 550 and ACO Qmax® 700 channels
- For use between ACO Qmax® 550 male and ACO Qmax® 700 female channel connections
- Simple fitting

Installation instructions supplied

ACO Qmax® 550 chamber connectors

Product code	Description	Weight (kg)
32826	ACO Qmax® 550 chamber connector assembly (pair)	11.8
Connection 375mm t		

ACO Qmax® 550 female end chamber connector

ACO Qmax® 550 male end chamber connector

ACO Qmax® ductile iron edge rail protector

			Width overall	Depth overall	
Product code	Description	Length (m)	(mm)	(mm)	Weight (kg)
32854	ACO Qmax® ductile iron edge rail protector 15.25m roll	15.25	65	1.5	5.0

ACO Qmax® ductile iron edge rail protector has the following functions:

- Used to cover and protect rails from debris during installation
- Simple fitting
- Can be reused

ACO Qmax® 550 hydraulic performance tables

Hydraulic capacities

The table opposite shows the maximum capacity of the unit, assuming uniform lateral inflow to. The capacity will depend on the length of unit to the outlet and on any slope along the unit.

Q (I/s) is the maximum total flow that the channel can carry.

q (l/s/m) is the maximum possible lateral inflow.

A (m²) is the maximum area that can be drained and will depend on the design rainfall intensity chosen. The tabulated areas are for a rainfall intensity of 50mm/h (0.014 l/s/m²).

At other rainfall intensities, the area can be determined by proportion, e.g. at 75mm/h, the maximum area drained will be the tabulated area x 50/75.

ACO Water Management Design Services Team

Please contact the ACO Water Management Design Services Team on 01462 816666 for advice on channels with non-uniform inflow, or channels receiving point inflows at the end or at intermediate locations. The ACO Water Management Design Services Team will be pleased to assist with any technical queries, scheme designs or parts schedules.

Designing a drainage system

An example design method is provided on page 50 to help determine your drainage requirements.

This example will enable you to use the hydraulic performance tables on this page.

ACO Qmax® 550 channels

0%			0.5%			1%		
Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)
127.5	2.55	9180	190.0	3.80	13680	235.0	4.70	16920
117.2	1.17	8440	204.9	2.05	14750	260.0	2.60	18720
100.8	0.50	7260	220.0	1.10	15840	286.0	1.43	20592
86.1	0.29	6200	226.7	0.76	16320	300.0	1.00	21600
78.6	0.20	5660	231.5	0.58	16670	308.1	0.77	22180
73.3	0.15	5280	235.0	0.47	16920	313.5	0.63	22570
69.4	0.12	5000	237.2	0.40	17080	317.5	0.53	22860
67.5	0.10	4860	238.8	0.34	17190	319.4	0.46	23000
65.6	0.08	4723	240.0	0.30	17280	320.1	0.40	23050
62.2	0.07	4480	240.0	0.27	17280	320.1	0.36	23050
60.0	0.06	4320	240.0	0.24	17280	320.1	0.32	23050
	Q (Vs) 127.5 117.2 100.8 86.1 78.6 73.3 69.4 67.5 65.6 62.2	Q (I/s) q (I/s/m) 127.5 2.55 117.2 1.17 100.8 0.50 86.1 0.29 78.6 0.20 73.3 0.15 69.4 0.12 67.5 0.10 65.6 0.08 62.2 0.07	Q (I/s) q (I/s/m) A (m²) 127.5 2.55 9180 117.2 1.17 8440 100.8 0.50 7260 86.1 0.29 6200 78.6 0.20 5660 73.3 0.15 5280 69.4 0.12 5000 67.5 0.10 4860 65.6 0.08 4723 62.2 0.07 4480	Q (l/s) q (l/s/m) A (m²) Q (l/s) 127.5 2.55 9180 190.0 117.2 1.17 8440 204.9 100.8 0.50 7260 220.0 86.1 0.29 6200 226.7 78.6 0.20 5660 231.5 73.3 0.15 5280 235.0 69.4 0.12 5000 237.2 67.5 0.10 4860 238.8 65.6 0.08 4723 240.0 62.2 0.07 4480 240.0	Q (l/s) q (l/s/m) A (m²) Q (l/s) q (l/s/m) 127.5 2.55 9180 190.0 3.80 117.2 1.17 8440 204.9 2.05 100.8 0.50 7260 220.0 1.10 86.1 0.29 6200 226.7 0.76 78.6 0.20 5660 231.5 0.58 73.3 0.15 5280 235.0 0.47 69.4 0.12 5000 237.2 0.40 67.5 0.10 4860 238.8 0.34 65.6 0.08 4723 240.0 0.30 62.2 0.07 4480 240.0 0.27	Q (I/s) q (I/s/m) A (m²) Q (I/s) q (I/s/m) A (m²) 127.5 2.55 9180 190.0 3.80 13680 117.2 1.17 8440 204.9 2.05 14750 100.8 0.50 7260 220.0 1.10 15840 86.1 0.29 6200 226.7 0.76 16320 78.6 0.20 5660 231.5 0.58 16670 73.3 0.15 5280 235.0 0.47 16920 69.4 0.12 5000 237.2 0.40 17080 67.5 0.10 4860 238.8 0.34 17190 65.6 0.08 4723 240.0 0.30 17280 62.2 0.07 4480 240.0 0.27 17280	Q (l/s) q (l/s/m) A (m²) Q (l/s) q (l/s/m) A (m²) Q (l/s) 127.5 2.55 9180 190.0 3.80 13680 235.0 117.2 1.17 8440 204.9 2.05 14750 260.0 100.8 0.50 7260 220.0 1.10 15840 286.0 86.1 0.29 6200 226.7 0.76 16320 300.0 78.6 0.20 5660 231.5 0.58 16670 308.1 73.3 0.15 5280 235.0 0.47 16920 313.5 69.4 0.12 5000 237.2 0.40 17080 317.5 67.5 0.10 4860 238.8 0.34 17190 319.4 65.6 0.08 4723 240.0 0.30 17280 320.1 62.2 0.07 4480 240.0 0.27 17280 320.1	Q (I/s) q (I/s/m) A (m²) Q (I/s) q (I/s/m) A (m²) Q (I/s) q (I/s/m) 127.5 2.55 9180 190.0 3.80 13680 235.0 4.70 117.2 1.17 8440 204.9 2.05 14750 260.0 2.60 100.8 0.50 7260 220.0 1.10 15840 286.0 1.43 86.1 0.29 6200 226.7 0.76 16320 300.0 1.00 78.6 0.20 5660 231.5 0.58 16670 308.1 0.77 73.3 0.15 5280 235.0 0.47 16920 313.5 0.63 69.4 0.12 5000 237.2 0.40 17080 317.5 0.53 67.5 0.10 4860 238.8 0.34 17190 319.4 0.46 65.6 0.08 4723 240.0 0.30 17280 320.1 0.40 62.2

The ACO Qmax® 700 channel is manufactured from recycled MDPE which is lightweight, chemically resistant and extremely robust. Its ovoid High-Flow bore, sealed push fit channel connections and unique patented inlet design ensure efficient drainage even at low hydraulic flows and promote self cleansing. Installation rates are maximised and the product is fully integrated within the pavement detail providing long term dependable performance. The increased hydraulic capacity of the ACO Qmax® 700 channel makes it ideal for larger catchments and can eliminate the need for additional carrier drains and pipework.

ACO Qmax® 700 channels are available with the following components:

- Outlet, closing and blanking end caps
- 700-900 step connector
- · Access and silt chambers
- · Installation edge rail protectors
- · Q-Brake Vortex flow controls

700

Unit size

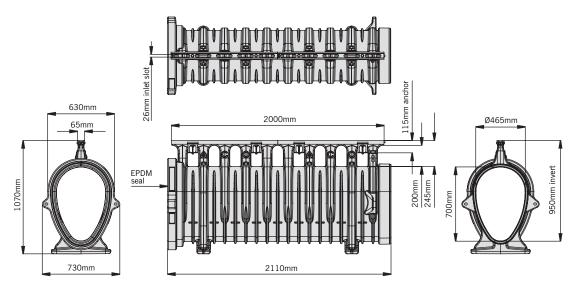
Hydraulic capacity

16600m^{2*}

Catchment area

0.2501m³/m Attenuation capacity

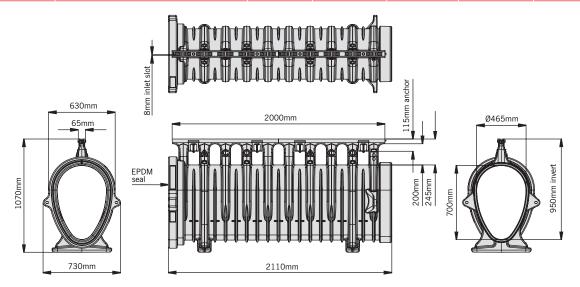
Access/silt chambers


Q-Slot cover and frame

*Example run based on 100m length laid level at 50mm/hr rainfall

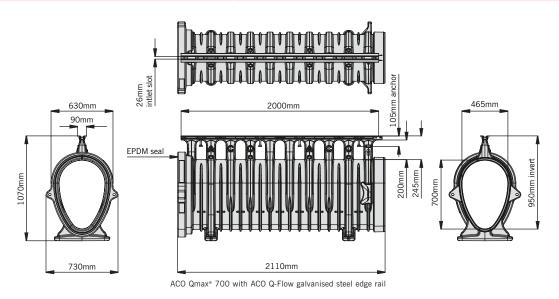
35

ACO Qmax® 700 with ACO Q-Flow ductile iron edge rail

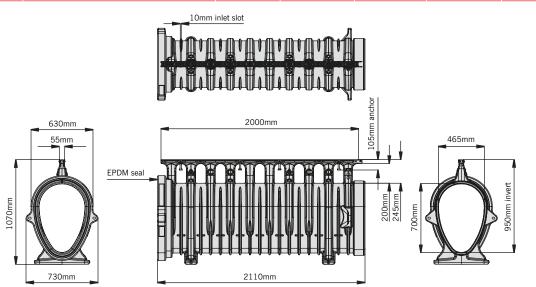

			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32830	ACO Qmax® 700 channel assembly complete	2000	730	1070	26	49.7
	with ACO Q-Flow ductile iron edge rail					

ACO Qmax® 700 with ACO Q-Flow ductile iron edge rail

ACO Qmax® 700 with ACO Q-Guard ductile iron edge rail


			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32831	ACO Qmax® 700 channel assembly complete	2000	730	1070	2 x 8	50.7
	with ACO Q-Guard ductile iron edge rail					

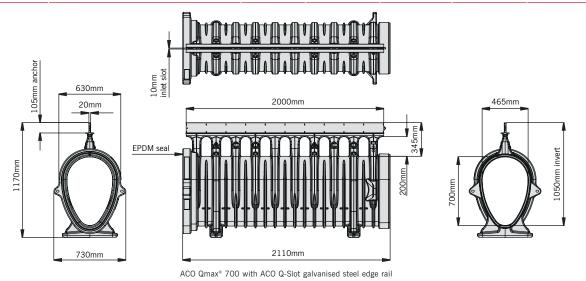
ACO Qmax® 700 with ACO Q-Guard ductile iron edge rail


ACO Qmax® 700 with ACO Q-Flow galvanised steel edge rail

			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32832	ACO Qmax® 700 channel assembly complete	2000	730	1070	26	41.9
	with ACO Q-Flow galvanised steel edge rail					

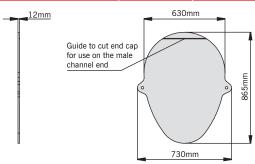
ACO Qmax® 700 with ACO Q-Guard galvanised steel edge rail

			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32833	ACO Qmax® 700 channel assembly complete	2000	730	1070	10	39.4
	with ACO Q-Guard galvanised steel edge rail					



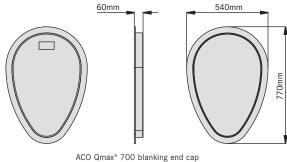
ACO Qmax® 700 with ACO Q-Guard galvanised steel edge rail

ACO Qmax® 700


ACO Qmax® 700 with ACO Q-Slot galvanised steel edge rail

			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32834	ACO Qmax® 700 channel assembly complete	2000	730	1170	10	47.0
	with ACO Q-Slot galvanised steel edge rail					

ACO Qmax® 700 closing end cap


			Width overall	Depth overall	
Product code	Description	Length (mm)	(mm)	(mm)	Weight (kg)
32835	ACO Qmax® 700 closing end cap	730	12	865	4.9

ACO Qmax® 700 closing end cap

ACO Qmax® 700 blanking end cap

			Width overall	Depth overall	
Product code	Description	Length (mm)	(mm)	(mm)	Weight (kg)
32887	ACO Qmax® 700 blanking end cap	540	60	770	3.1

cut to length during installationSimple fitting

the following functions:

Installation instructions supplied

ACO Qmax® 700 blanking end cap has

Enables cut channels to be capped off if

ACO Qmax® 700

ACO Qmax® 700 to 900 step connector

			Width overall	Depth overall	
Product code	Description	Length (mm)	(mm)	(mm)	Weight (kg)
32883	ACO Qmax® 700 to 900 step connector (M to F)	860	95	1065	3.7

ACO Qmax® 700 to 900 step connector

ACO Qmax $^{\circ}$ 700 to 900 step connector has the following functions:

- ► Enables step fall installations of ACO Qmax® 700 and ACO Qmax® 900 channels
- For use between ACO Qmax® 700 male and ACO Qmax® 900 female channel connections
- Simple fitting

Installation instructions supplied

ACO Qmax® 700 chamber connectors

Product code	Description	Weight (kg)
32836	ACO Qmax® 700 chamber connector assembly (pair)	15.8
		ection for mm twinwall

ACO Qmax® 700 female end chamber connector

800mm

ACO Qmax® 700 male end chamber connector

800mm

ACO Qmax® ductile iron edge rail protector

Product code	Description	Length (m)	Width overall (mm)	Depth overall (mm)	Weight (kg)
32854	ACO Qmax® ductile iron edge rail protector 15.25m roll	15.25	65	1.5	5.0

ACO Qmax® ductile iron edge rail protector has the following functions:

- Used to cover and protect rails from debris during installation
- Simple fitting

765mm

Can be reused

ACO Qmax® 700 hydraulic performance tables

Hydraulic capacities

The table opposite shows the maximum capacity of the unit, assuming uniform lateral inflow. The capacity will depend on the length of unit to the outlet and on any slope along the unit.

Q (I/s) is the maximum total flow that the channel can carry.

q (l/s/m) is the maximum possible lateral inflow.

A (m²) is the maximum area that can be drained and will depend on the design rainfall intensity chosen. The tabulated areas are for a rainfall intensity of 50mm/h (0.014 l/s/m2).

At other rainfall intensities, the area can be determined by proportion, e.g. at 75mm/h, the maximum area drained will be the tabulated area x 50/75.

ACO Water Management Design Services Team

Please contact the ACO Water Management Design Services Team on 01462 816666 for advice on channels with non-uniform inflow, or channels receiving point inflows at the end or at intermediate locations. The ACO Water Management Design Services Team will be pleased to assist with any technical queries, scheme designs or parts schedules.

Designing a drainage system

An example design method is provided on page 50 to help determine your drainage requirements.

This example will enable you to use the hydraulic performance tables on this page.

ACO Qmax® 700 channels

Slope	0%			0.5%			1%		
Length to Outlet (m)	Q (l/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)
50	250.0	5.00	18000	345.0	6.90	24840	405.0	8.10	29160
100	230.0	2.30	16560	370.0	3.70	26640	450.0	4.50	32400
200	200.0	1.00	14400	406.9	2.03	29300	520.0	2.60	37440
300	183.3	0.61	13200	438.9	1.46	31600	550.0	1.83	39600
400	170.8	0.43	12300	458.3	1.15	33000	559.7	1.40	40300
500	160.0	0.32	11520	468.1	0.94	33700	565.3	1.13	40700
600	148.5	0.25	10690	473.6	0.79	34100	570.8	0.95	41100
690	140.4	0.20	10110	477.8	0.69	34400	575.0	0.83	41400
800	136.0	0.17	9792	477.8	0.60	34400	577.8	0.72	41600
900	129.3	0.14	9310	477.8	0.53	34400	577.8	0.64	41600
1000	125.0	0.13	9000	477.8	0.48	34400	577.8	0.58	41600
1000	125.0	0.13	9000	477.8	0.48	34400	577.8	0.58	41

The ACO Qmax® 900 channel is manufactured from recycled MDPE which is lightweight, chemically resistant and extremely robust. Its ovoid High-Flow bore, sealed push fit channel connections and unique patented inlet design ensure efficient drainage even at low hydraulic flows and promote self cleansing. Installation rates are maximised the product is fully integrated within the pavement detail providing long term dependable performance. The increased hydraulic capacity of the ACO Qmax® 900 channel makes it ideal for larger catchments and can eliminate the need for additional carrier drains and pipework.

ACO Qmax® 900 channels are available with the following components:

- Outlet, closing and blanking end caps
- Access and silt chambers
- Installation edge rail protectors
- Q-Brake Vortex flow controls

900

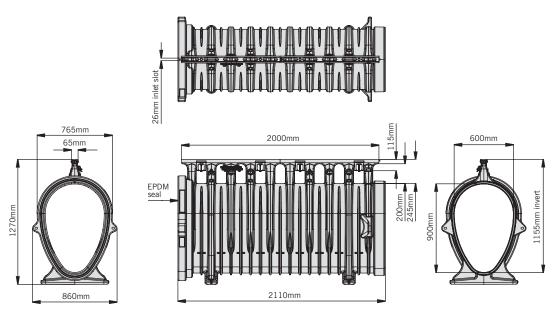
Unit size

Hydraulic capacity

31700m^{2*} Catchment area

0.4135m³/m Attenuation capacity

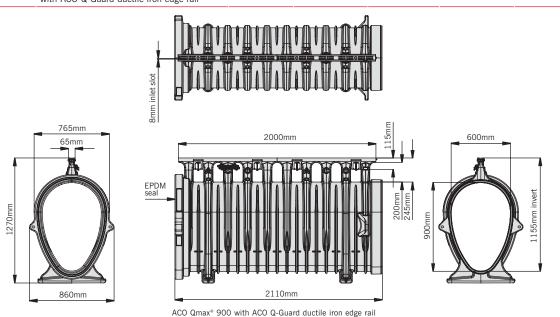
Access/silt chambers



Q-Slot cover and frame

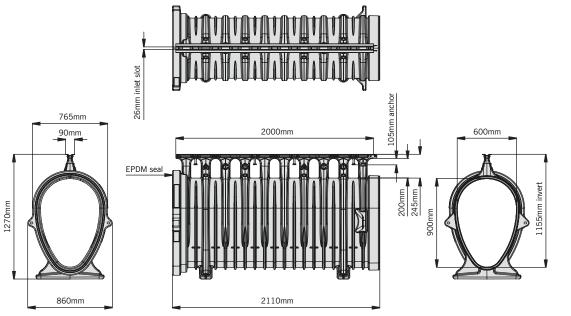
*Example run based on 100m length laid level at 50mm/hr rainfall

ACO Qmax® 900 with ACO Q-Flow ductile iron edge rail


			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32840	ACO Qmax® 900 channel assembly complete	2000	860	1270	26	65.3
	with ACO Q-Flow ductile iron edge rail					

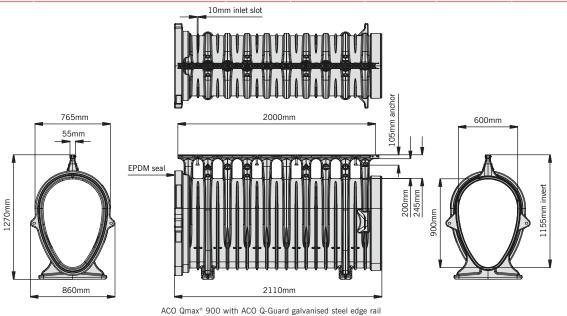
ACO Qmax® 900 with ACO Q-Flow ductile iron edge rail

ACO Qmax® 900 with ACO Q-Guard ductile iron edge rail

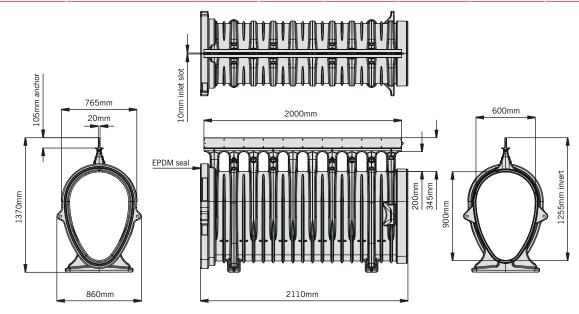

Product code	Description	Length (mm)		Depth overall (mm)	Slot width (mm)	Weight (kg)
32841	ACO Qmax® 900 channel assembly complete	2000	860	1270	2 x 8	66.3
	with ACO Q-Guard ductile iron edge rail					

ACO Qmax® 900

ACO Qmax® 900 with ACO Q-Flow galvanised steel edge rail


			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32842	ACO Qmax® 900 channel assembly complete	2000	860	1270	26	57.2
	with ACO Q-Flow galvanised steel edge rail					

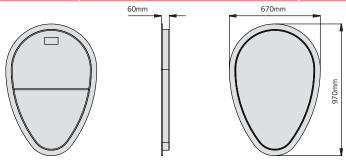
ACO Qmax® 900 with ACO Q-Flow galvanised steel edge rail


ACO Qmax® 900 with ACO Q-Guard galvanised steel edge rail

			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32843	ACO Qmax® 900 channel assembly complete	2000	860	1270	10	54.7
	with ACO Q-Guard galvanised steel edge rail					

ACO Qmax® 900 with ACO Q-Slot galvanised steel edge rail

			Width overall	Depth overall	Slot width	
Product code	Description	Length (mm)	(mm)	(mm)	(mm)	Weight (kg)
32844	ACO Qmax® 900 channel assembly complete	2000	860	1370	10	62.3
	with ACO Q-Slot galvanised steel edge rail					


ACO Qmax® 900 with ACO Q-Slot galvanised steel edge rail

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Weight (kg)
32845	ACO Qmax® 900 closing end cap	860	16	1065	9.8
	f	uide to cut end cap r use on the male lannel end	1065mm		

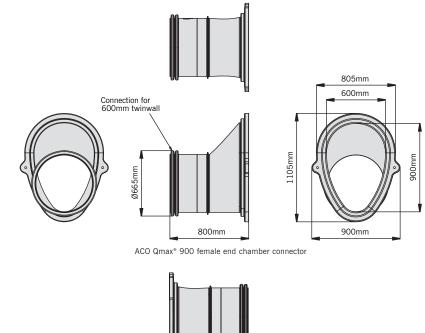
ACO Qmax® 900 closing end cap

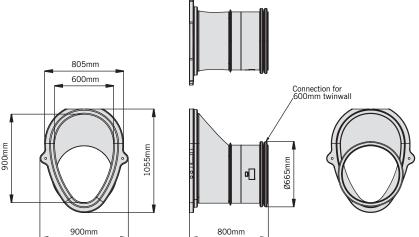
ACO Qmax® 900 blanking end cap

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Weight (kg)
32888	ACO Qmax® 900 blanking end cap	670	60	970	4.9

ACO Qmax® 900 blanking end cap

ACO Qmax® 900 blanking end cap has the following functions:


- Enables cut channels to be capped off if cut to length during installation
- Simple fitting


Installation instructions supplied

ACO Qmax® 900

ACO Qmax® 900 chamber connectors

Product code	Description	Weight (kg)
32846	ACO Qmax® 900 chamber connector assembly (pair)	25.1

ACO Qmax® 900 male end chamber connector

ACO Qmax® ductile iron edge rail protector

Product code	Description	Length (m)	Width overall (mm)	Depth overall (mm)	Weight (kg)
32854	ACO Qmax® ductile iron edge rail protector 15.25m roll	15.25	65	1.5	5.0

ACO Qmax® ductile iron edge rail protector has the following functions:

- Used to cover and protect rails from debris during installation
- ▶ Simple fitting
- Can be reused

ACO Qmax® 900 hydraulic performance tables

Hydraulic capacities

The table opposite shows the maximum capacity of the unit, assuming uniform lateral inflow. The capacity will depend on the length of unit to the outlet and on any slope along the unit.

Q (I/s) is the maximum total flow that the channel can carry.

q (l/s/m) is the maximum possible lateral inflow.

A (m²) is the maximum area that can be drained and will depend on the design rainfall intensity chosen. The tabulated areas are for a rainfall intensity of 50mm/h (0.014 l/s/m²).

At other rainfall intensities, the area can be determined by proportion, e.g. at 75mm/h, the maximum area drained will be the tabulated area x 50/75.

ACO Water Management Design Services Team

Please contact the ACO Water Management Design Services Team on 01462 816666 for advice on channels with non-uniform inflow, or channels receiving point inflows at the end or at intermediate locations. The ACO Water Management Design Services Team will be pleased to assist with any technical queries, scheme designs or parts schedules.

Designing a drainage system

An example design method is provided on page 50 to help determine your drainage requirements.

This example will enable you to use the hydraulic performance tables on this page.

ACO Qmax® 900 channels

Slope	0%			0.5%			1%		
Length to Outlet (m)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)	Q (I/s)	q (l/s/m)	A (m²)
50	466.5	9.33	33588	620.0	12.40	44640	730.0	14.60	52560
100	440.0	4.40	31680	675.0	6.75	48600	835.0	8.35	60120
200	400.0	2.00	28800	748.0	3.74	53856	950.0	4.75	68400
300	370.5	1.24	26676	786.0	2.62	56592	1005.0	3.35	72360
400	343.2	0.86	24710	808.0	2.02	58176	1027.8	2.57	74000
500	322.5	0.65	23220	825.0	1.65	59400	1045.8	2.09	75300
600	309.0	0.52	22248	834.0	1.39	60048	1055.6	1.76	76000
700	296.8	0.42	21370	841.8	1.20	60606	1064.0	1.52	76608
800	284.0	0.36	20448	852.0	1.07	61344	1075.2	1.34	77414
900	274.5	0.31	19764	857.7	0.95	61754	1080.0	1.20	77760
1000	265.0	0.27	19080	863.0	0.86	62136	1086.0	1.09	78192

ACO Qmax® 550, 700 and 900 access and silt chamber

The ACO Qmax® 550, 700 & 900 access and silt chamber provides a compact and economical method of gaining access to the channel system for maintenance and cleaning, or silt management.

The chamber is specifically designed for use with ACO Qmax® 550, 700 and 900 channels and allow 4-way channel connections to be made for simple directional changes and optimised scheme designs.

ACO Qmax® 225 and 350 channel connections are also provided where large silt capacities are required or if all channel sizes are to be connected to the access chamber.

The ACO Qmax® access and silt chamber is manufactured from MDPE which is lightweight, tough and chemically resistant.

D 400 / F 900 ductile iron slotted cover and frame

D 400 / F900 ductile iron solid cover and frame

Where access and silt chambers are to be

used in conjunction with ACO Qmax®

Q-slot channels, a recessed cover and

frame supplied by others can be used in

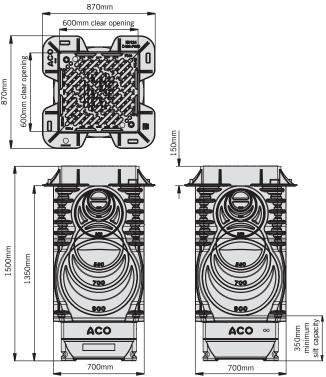
conjunction with the ACO Qmax® 550,

700 and 900 access and silt chamber

supplied without covers and frames,

bodies. For further details of the chambers

Cover and frame options


The chambers come complete with either a ductile iron slotted or solid double triangular cover and frame. Both options are available in Load Class D 400 or F 900. As standard all F 900 ductile iron slotted or solid covers are lockable for added product and site security.

please contact the ACO Water Management Customer Support Team on 01462 816666.

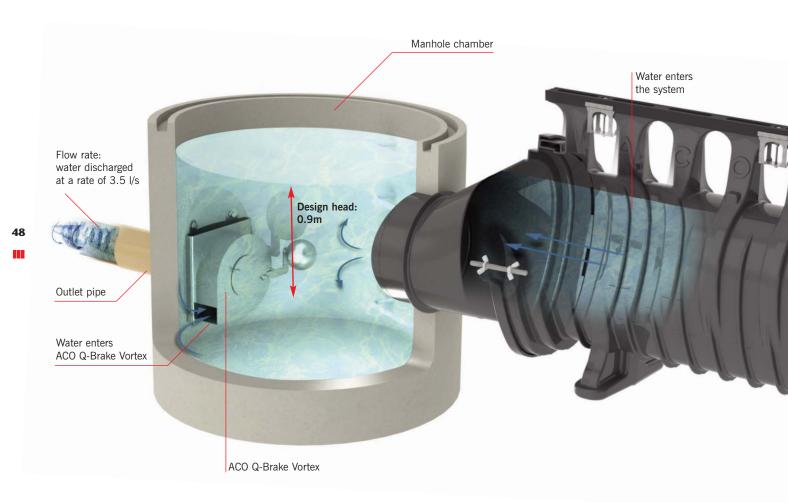
All materials used in the construction of ACO Qmax* chambers, covers and frames contain high levels of recycled materials and are themselves recyclable at the end of their life.

ACO Qmax® access chamber assemblies

Product code	Description	Length (mm)	Width overall (mm)	Depth overall (mm)	Weight (kg)
44314	Access chamber with D 400 slotted cover and frame	870	870	1500	148
44315	Access chamber with D 400 solid cover and frame	870	870	1500	147
44316	Access chamber with F 900 slotted cover and frame	870	870	1500	181
44317	Access chamber with F 900 solid cover and frame	870	870	1500	175

ACO Qmax® 550, 700 and 900 access chamber with slotted cover and frame

Controlling stormwater discharge


If a controlled rate discharge is required, ACO Qmax* can be used in conjunction with the ACO Q-Brake Vortex flow control unit to regulate stormwater flows. ACO Q-Brake Vortex provides superior hydraulic performance in comparison to traditional flow control systems and permits more flow at lower heads, reducing storage volume requirements and lowering cost.

Compared with more conventional methods e.g. orifice plates or sized pipework, ACO Q-Brake Vortex is less prone to blockage and permits higher flow at a lower head of water, as a vortex flow control allows an outlet orifice 4-6 times larger in cross-sectional area to be used.

The installation below simulates how the ACO Qmax® 900 channel system is used to provide surface water drainage, whilst the ACO Q-Brake Vortex is used to regulate the rate of discharge from the development into the watercourse or sewer network.

The benefits of using this stormwater control system are best demonstrated in the example shown on the opposite page. The conclusion of the example means that upstream storage can be reduced by 10% compared to using a traditional flow control system.

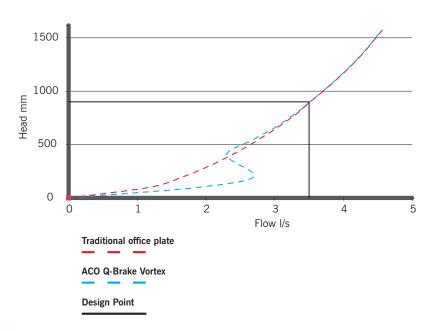
ACO Q-Brake Vortex specification and design process

Manufactured from grade 304 stainless steel, each ACO Q-Brake Vortex is individually configured to suit specific performance criteria. Our engineers will use industry standard drainage software and hydraulic design calculations to ensure the system is correctly sized for any project requirement.

ACO Qmax® channel attenuation storage with a Q-Brake Vortex flow control

Example:

There is a project in Bedford, England with a catchment area of 1200m^2 . The project has design criteria of a 1 in 30 year storm and the runoff from the site must not exceed 3.5l/s at a design head of 0.9m (the height of the ACO Qmax* 900 channel).

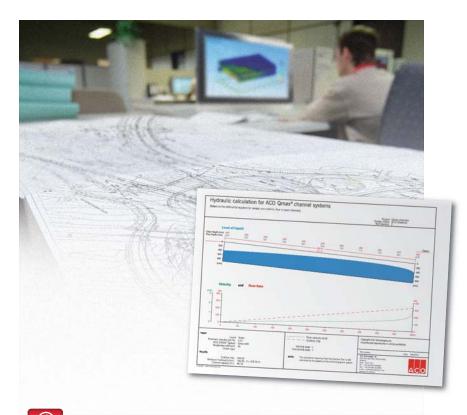

Results:

Using MicroDrainage® software, ACO has compared the upstream storage requirements using ACO Q-Brake Vortex and a traditional orifice plate. The results are summarised below:

- ACO Q-Brake Vortex required Ø73mm.
 Upstream attenuation requirement met by 50m ACO Qmax® 900.
- Orifice plate size required Ø41mm. Upstream attenuation requires 55m of ACO Qmax® 900.

ACO Q-Brake Vortex reduces the requirement for attenuation whilst having an orifice nearly three times the area of the traditional orifice plate and making ACO Q-Brake Vortex more efficient and far less prone to blockage.

Discharge characteristics



The hydraulic capacity of channels accepting flow all along their length can be calculated by the analysis of the differential equations for spatially varied flow, a procedure that requires a computer program such as the proprietary ACO Hydro software, or ACO's new online design software. ACO Design enables users to develop an optimised design of stepped sizes of channels, increasing in size down the run of the channel. For more information visit www.aco.co.uk.

Designing a drainage system

Design of a run of channel drainage requires data on the total drainage catchment area (taken from drawings) and the design rainfall intensity (determined with reference to guidance in BS EN 752). Typical design rainfall intensities are 50mm/h (0.014 l/s.m²) for areas where some ponding could be tolerated during and for a few minutes after heavy rain, or approximately 75mm/h (0.021 l/s.m²) where ponding cannot normally be tolerated. For large areas, BS EN 752 should be consulted to determine an appropriate design rainfall.

Where the attenuation volume of the large capacity channels is to be analysed, the storage requirements will need to be determined for a range of different storms. ACO can provide channel data for use in proprietary software, such as MicroDrainage WinDes. Please contact ACO Water Management Design Services Team.

It should be noted that other methods will not give the correct results for channel drainage systems. In particular the use of equations of steady uniform flow, such as Manning's equation, is totally inappropriate for channel drainage design. They will not work at all with level channels and will give grossly inaccurate results at shallow gradients.

ACO Water Management Design Services Team

ACO has embraced the concept of 'value engineering' – an approach to on-site construction that saves both time and money. ACO will review any design to minimise the total scheme and life cost of a proposal. By using ACO Qmax*, it is often possible to remove the need for any conventional underground drainage.

For detailed designs using the ACO Hydro software, please contact the ACO Water Management Design Services Team. The team should also be consulted for advice where the inflow is not uniformly distributed along the channel.

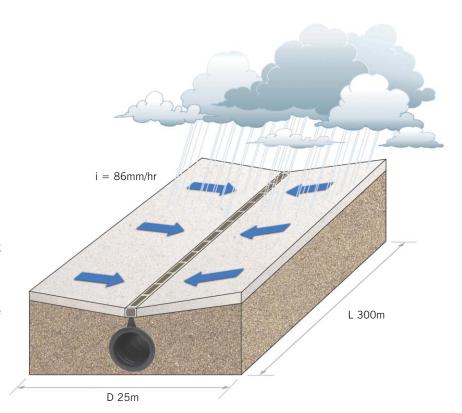
The hydraulic performance tables within the relevant sections have been produced from the ACO Hydro software to facilitate a quick manual design method for the determination of the drainage requirements.

The columns of drainage catchment area (A m^2) are based on a rainfall intensity of 50mm/h, but can be adapted for use at any rainfall intensity. The columns of maximum flow rate (Q l/s) and maximum lateral inflow (q l/s/m) can be used at any rainfall intensity.

ACO Water Management Design Services Team

Tel: 01462 816666 Email: technical@aco.co.uk

The team is equipped with a new in-house design programme - ACO Hydraulic Design software – this unique, highly sophisticated software is built to enable the efficient and accurate hydraulic design of surface water management schemes using channels as the means of conveyance. ACO Hydraulic Design is also available for you to utilise. Visit www.aco.co.uk to find out more.



Design example

For a design of ACO Qmax®, assume the following figures:

- D = 25m (depth of catchment area)
- L = 300m (length of run = length of catchment)
- i = 86mm/hr (design rainfall intensity) Ground slope = 0%

The determination of the capacity of the proposed ACO Qmax® channel can be determined from the tables in this brochure in any one of three ways. Using the catchment area is particularly easy when the UK default rainfall intensity of 50mm/h is used for design (but can be used at other rainfall intensities as in the example below). Using the total flowrate Q or the lateral inflow q the capacity can be read straight off the tables at any rainfall intensity.

GUIDANCE NOTES

1. Determine the area

Area = $L \times D = 300 \times 25 = 7,500$ m².

The tables in the respective product chapters give the maximum area that can be drained. However the tables use the standard UK default rainfall intensity of 50mm/hr, and this design requires a higher design rainfall of 86mm/hr. So in order to use the tables to determine the maximum area that can be drained, increase the effective area to, in this case, $7500 \times 86/50 = 12,900m^2$.

From the tables for ACO Qmax® 700 on page 40, for a slope of 0% it can be seen that a 300m length can drain the required area (it could actually drain 13,200m² at 50mm/hr or 7,675m² at 86 mm/h).

2. Determine the total flow in the channel (Q)

The total flow Q = area x rainfall intensity (and where rainfall intensity is in mm/h, divide by 3600 to adjust the units from hours to seconds).

 $Q = 300 \times 25 \times 86 / 3600 = 179 \text{ l/s}$

Again we see from the table that the 300m run of ACO Qmax® 700 can carry the flow (max flow rate from the table is 183 l/s).

3. Determine the lateral inflow rate (q)

Dividing the total flow by the total channel length gives the rate of lateral inflow into the channel, in I/s per metre run of channel.

q = Q / L

q = 179 / 300 = 0.597 l/s/m

We see from the table that the 300m run of ACO Qmax® 700 can carry the flow (max lateral flow rate from the table is 0.61 l/s).

Channel installation detail

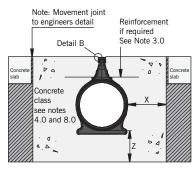
ACO QMAX® 225 AND 350 CHANNEL UNITS

Asphalt pavement Option 1 & 2

General note. These installation details are based on UK site methods and installation practices only. The suitability of all other local or national site and installation practices must be checked. Please seek engineering advice.

1.0 Ground conditions

The customer should ensure that the minimum dimensions shown are suitable for existing ground conditions. Engineering advice may be necessary.


2.0 Surface protection.

The channels must not be trafficked until completion of the installation and the pavement surface. Thereafter the channel should be protected and kept free from mud and stones. During sitework ensure that the plastic protective strip (supplied with the galvanised steel edge rails) or the ductile iron edge rail protector (supplied separately) is not damaged or displaced, in order to prevent debris entering the channel during construction.

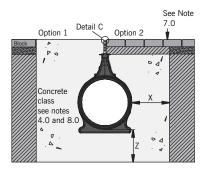
3.0 Reinforcement

The reinforcement required in the concrete surround varies with the installation group (load class) and channel size. For a Load Class D 400 application it is likely to be sufficient to continue the slab reinforcement (if any) through the Qmax® arch detail under the slot. For Load Class

Concrete pavement

F 900 it may be necessary to reinforce over, under and to the sides of the unit (as indicated). Engineering advice should be sought.

4.0 Concrete surround


The minimum class of concrete is given in table 8.0 depending on channel size and Load Class, subject to the site engineer's specification. Ensure that the channels do not float when pouring the concrete. To prevent flotation or distortion of the ACO Qmax® 550, 700 & 900 channels, pour concrete in several lifts, e.g. 1 to the line on the side of the channel, 2 to the crown of the channel and 3 to the finished levels.

Concrete to lifts 1 and 2 to be 50mm maximum slump (consistence class S1).

5.0 Joints

The detailing of joints is to be determined by the engineer in conjunction with the detailing of the pavement. A longitudinal expansion joint is typically formed down each side of the concrete surround as indicated. A transverse joint is typically formed at each channel section collar (e.g. by 100mm deep saw cut or 75mm deep plastic joint former).

Block pavement Option 1 & 2

6.0 Watertightness

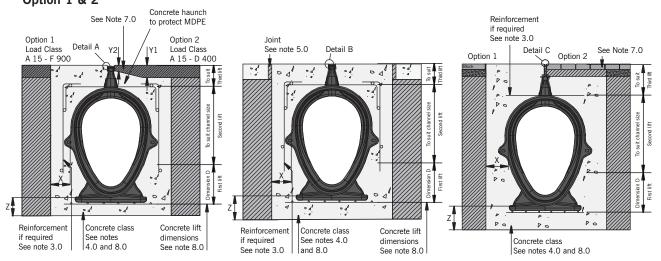
Where ACO Qmax® channels are to be installed with watertight joints, the seal between channel units must be checked for cleanliness and then smeared with lubricant jelly such as proprietary pipe joining lubricant.

Guidance on the preparation should be sought from the lubricant manufacturer. ACO Qmax® channels are tested to confirm compliance with the watertightness requirements of BS EN 1433 when filled with water to the top of the channel bore (below the inlet arches). Installation must be in accordance with ACO's recommendations and the recommendations of the lubricant manufacturer. It is envisaged that the channel joints would not be subject to movement, but any movement of the joint might compromise watertightness.

7.0 Pavement

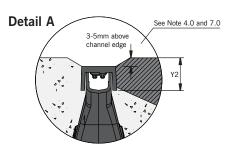
The combined depth of the asphalt pavement must not exceed the Y1 and Y2 dimensions given in table 8.0. Ensure the edge rail arches are well embedded into the concrete.

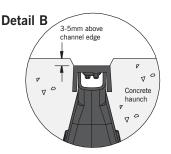
When laying blocks with the ACO Qmax® with Q-Slot edge; the first block must be bedded in epoxy mortar to ensure the slot is supported and the block is restrained from movement.

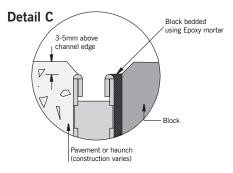

An electronic version of the ACO Qmax® installation detail is available to download from the ACO website. Visit www.aco.co.uk.

ACO QMAX® 550, 700 AND 900 CHANNEL UNITS

Asphalt pavement Option 1 & 2


Concrete pavement

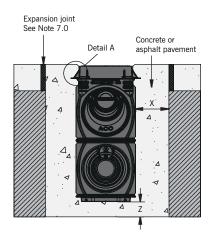

Block paving



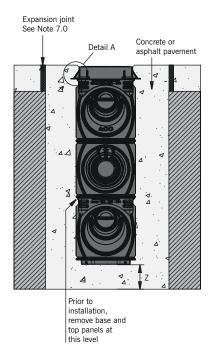
8.0 Load Class concrete requirements

Channel size	C 250	D 400	E 600	F 900
Qmax® 225	C20/25	C20/25	C32/40 or EU 30/37	
Х	150	150	150	200
Z	150	150	150	200
Y1	110 max	110 max	N/A	110 max
Y2	35 max	35 max	N/A	N/A
Reinforcement	No	No	No	Yes
Channel size	C 250	D 400	E 600	F 900
Qmax® 350	C20/25	C20/25	C32/40 or EU 30/37	C32/40 or EU 30/37
Χ	150	150	150	200
Z	150	150	150	200
Y1	110 max	110 max	N/A	N/A
Y2	35 max	35 max	N/A	N/A
Reinforcement	No	No	No	Yes
Channel size	C 250	D 400	E 600	F 900
Qmax® 550	C20/25	C20/25	C20/25	C32/40 or EU 30/37
X	150	150	200	200
Z	150	150	200	200
Y1	110 max	110 max	N/A	N/A
Y2	35 max	35 max	N/A	N/A
Reinforcement	No	No	No	Yes
Dimension D	265	265	265	265
Channel size	C 250	D 400	E 600	F 900
Qmax® 700	C20/25	C20/25	C32/40 or EU 30/37	C32/40 or EU 30/37
Х	150	150	200	200
Z	150	150	200	200
Y1	110 max	110 max	N/A	N/A
Y2	35 max	35 max	N/A	N/A
Reinforcement	No	No	Yes	Yes
Dimension D	290	290	290	290
Channel size	C 250	D 400	E 600	F 900
Qmax® 900	C20/25	C32/40 or EU 30/37	C32/40 or EU 30/37	C32/40 or EU 30/37
Х	200	200	200	200
Z	200	200	200	200
Y1	110 max	110 max	N/A	N/A
Y2	35 max	35 max	N/A	N/A
Reinforcement	No	Yes	Yes	Yes
Dimension D	315	315	315	315

9.0 Cutting of channels


The 2000mm long channels may be cut to a shorter length of 400mm, 1000mm and 1400mm.

Access chamber installation detail


ACO Qmax® 225 & 350 access chamber with slotted cover and frame

Expansion joint See Note 7.0 Detail A Concrete or asphalt pavement

ACO Qmax® 225 & 350 access, outlet/inlet chamber with slotted cover and frame

ACO Qmax® 225 & 350 access, outlet/inlet and silt chamber with slotted cover and frame

1.0 Chamber preparation

Remove the appropriate ACO Qmax® access chamber circular connection panel(s) with padsaw or similar.

For the access, outlet/inlet, silt chamber, remove the base of the upper unit and top of the lower unit.

2.0 Excavation

Excavate including for the concrete bed and surround. Allowance must be made for the access chamber, cover and frame.

3.0 Concrete base

Backfill the ACO Qmax® access chamber with concrete, for class see table 8 on page 53, to fix the unit in place. Ensure the chamber does not float or move.

4.0 Channel connection

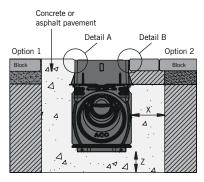
Connect the channels: For the ACO Qmax® 225 and 350 female channel connections the seal must be removed to connect to the ACO Qmax® Access Chamber. Male channels can connect directly. For connection of ACO Qmax® 550, 700 and 900 channels to ACO Qmax® access chamber an access chamber connector must be used. The ACO Qmax® access chamber connector must be cut, and the pipe connection detail removed, to enable connection to the ACO Qmax® access chamber.

5.0 Concrete surround

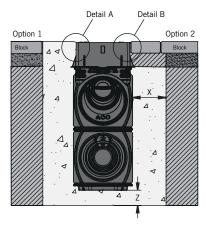
Install and backfill access chamber and channels with concrete as per ACO installation detail. Remove ACO Qmax® access chamber top panel prior to installation of frame and cover.

The minimum class of concrete is given in table 8.0 on page 53 depending on channel size and load class required with the chamber, subject to the client engineer's specification.

6.0 Chamber design and reinforcement


The customer should ensure that the minimum dimensions shown are suitable for the existing ground conditions. The structural design/reinforcement of the concrete surround is to be determined by the client. Engineering advice may be necessary.

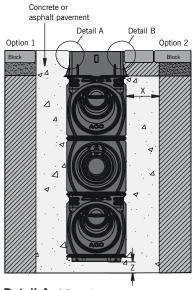
The reinforcement required in the chamber construction varies with the installation group (load class). Engineering advice should be sought.

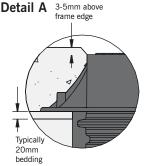

7.0 Joints

The detailing of joints is to be determined by the engineer in conjunction with the detailing of the pavement. A longitudinal expansion joint is typically formed down each side of the chamber (as indicated). Where the pavement is asphalt or block paving (with no concrete slab), then expansion joints may not be necessary. Engineering advice should be sought.

ACO Qmax® 225 & 350 access chamber with slotted Q-Slot recessed cover

ACO Qmax® 225 & 350 access, outlet/inlet chamber with D 400 Q-Slot recessed cover and frame




Installation guidance

ACO can give guidance with respect to the most suitable methods of installation for the Qmax* range. ACO Qmax* should be installed using acceptable levels of workmanship and according to the National Code of Practice (UK: BS 8000: Part 14:1989) in keeping with BS EN 1433:2002 (Drainage channels for vehicular and pedestrian areas).

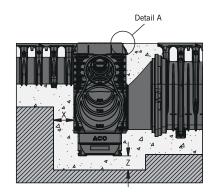
Detailed installation statements and methodologies will vary for all sites as each will have different aspects deserving particular consideration, consequently the relevant approvals should be sought from the consulting engineer and/or the installer.

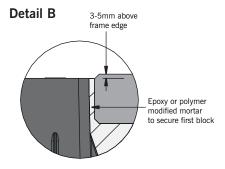
ACO Qmax® 225 & 350 access, outlet/inlet and silt chamber with slotted Q-Slot recessed cover and frame

Offloading, handling and storage instructions

In all operations, do not stack product on spigot (Male) end.

ACO Qmax® 225 and 350 Channels


Offload channels from delivery vehicle using forks. Do not throw channels off the vehicle. Products may have moved in transit. Ensure that stack is stable before removing pallet wrap. To avoid product falling during unpacking, ACO recommend that this is a 2 man job.


Always lift stack via pallet. Do not lift from any part of channel.

ACO Qmax® 550, 700 and 900 Channels

Offload channels from delivery vehicle using long forks or slings as appropriate. Do not throw channels off the vehicle. If craned, do not support from waterway inlet – use arches under the inlet slots. ACO Qmax® may be stored vertically, single stacked on socket (female) end or horizontally in a single layer.

ACO Qmax® 550, 700 & 900 access chamber with D 400 slotted/solid cover and frame oval to round connection detail

Storage instructions

ACO advises that products are stored in their original packaging until required to ensure protection of the product and to aid manoeuvre on site. Pallets of product must not be stacked on site to prevent damage and must be stored in a single layer only. All unwrapped products must be stored horizontally in a single layer.

When long term storage is envisaged (Greater than 6 weeks), the ACO Qmax® channels must be protected from direct sunlight, if protection cannot be provided, consideration must be given to the effects of daily exposure to direct sunlight. Protect from prolonged sub-zero temperatures. Do not allow heavy materials to be stacked on or against channels.

Chemical resistance chart

ACO Qmax® is manufactured from MDPE. MDPE has a high resistance to dilute acids and alkalis, and is unaffected by road salt, fuel, oil, deicing agents and other commonly encountered chemicals. Further details of the chemical resistance can be obtained from the ACO Water Management Design Services Team or for particular chemicals, samples of MDPE can be supplied to customers for their own testing. The chemical resistance will also depend on the temperature of the effluent

The resistance of the gratings and edge rails should also be considered.

This chemical resistance chart refers to chemical at ambient temperatures (20°C) and the results are for general guidance only.

Important considerations for chemical environments.

When reviewing potential applications for ACO Qmax® in chemical environments, the following issues should be considered:

- Type(s) & mixture of chemical(s)
- ▶ Concentration percentages
- ▶ Contact time with drainage system
- ► Temperatures of chemicals flowing into the drainage system (80°C max)
- Flushing system employed to clear chemicals from the drainage system
- Cleaning agents should be checked for compatibility with channel materials
- ACO material samples can be used for final determination of chemical resistance
- Edge rails, seals, access and silt chamber materials should be checked for chemical resistance

<u></u>		Resistance:
		Density
Chemical medium	% conc	Polyethylene
Acetic acid, glacial	Greater than 96%	YES
Acetic acid	10% - 100%	YES
Acetic anhydride	100%	YES
Acetone	100%	YES
Alum	SOL	YES
Aluminium Sulphate	SAT SOL	YES
Ammonium Chloride	SAT SOL	YES
Ammonium Nitrate	SAT SOL	YES
Ammonium Phosphate	SAT SOL	YES
Ammonium Sulphate	SAT SOL	YES
Aniline (aminobenzene)	100%	YES
Barium Chloride	SAT SOL	YES
Benzaldehyde	100%	YES
Benzene	100%	Limited
Benzyl Alcohol	100%	YES
Borax	SAT SOL	YES
Boric Acid	SAT SOL	YES
Bromine	100%	NO
Bromine Water	100%	NO
Butyl Acetate	100%	YES
Butyric acid	100%	YES
Calcium Carbonate	SAT SOL	YES
Calcium Chloride	SAT SOL	YES
Calcium Hydroxide	SAT SOL	YES
Calcium Nitrate	SAT SOL	YES
Carbon Disulphide	100%	Limited
Carbon Tetrachloride	100%	Limited
Castor Oil	SOL	YES
Chlorine Gas, wet	100%	Limited
Chlorine Water	2% SAT SOL	YES
Chlorobenzene	100%	NO
Chloroform	100%	NO
Chromic Acid	50%	YES
Citric Acid	SAT SOL	YES
Citric Acid	20%	YES
Citric Acid	50%	YES
Copper Chloride	SAT SOL	YES
Copper Nitrate	SAT SOL	YES
Diesel (DERV)	100%	YES
Dimethyl Formamide	100%	YES
Dicotyl Phthalate	100%	YES
Ethanol	40%	YES
Ethanol	96%	YES
Ethyl Acetate	100%	YES
Ethylene Glycol	100%	YES
Ferric Chloride	SAT SOL	YES
Ferrous Chloride	SAT SOL	YES
Ferrous Sulphate	SAT SOL	YES
Formaldehyde	40%	YES
Farmaia Asid	40%	YES
Formic Acid		VEC
Fuel Oil	100%	YES
Fuel Oil Glycerine	100% 100%	YES
Fuel Oil	100%	

		1
		Resistance:
		Medium
		Density
Chemical medium	% conc	Polyethylene YES
Hydrofluoric Acid	Concentrate 30-90%	YES
Hydrogen Peroxide		
Lactic Acid	100%	YES
Lead Acetate	SAT SOL	YES
Magnesium Chloride Magnesium Sulphate	SAT SOL	YES
Maleic Acid	Concentrate	YES
Motor Oil	100%	YES
Nickel Chloride	SAT SOL	YES
Nickel Sulphate	SAT SOL	YES
Nitric Acid	25%	YES
Nitrobenzine	100%	NO NO
Oleic Acid	100%	YES
Oxalic Acid	100%	YES
Phosphoric Acid	98%	YES
Phosphorous	100%	YES
Trichloride	100 /6	ILS
Petrol	100%	Limited
Potassium Carbonate	SAT SOL	YES
Potassium Chloride	SAT SOL	YES
Potassium Dichromate	SAT SOL	YES
Potassium Hydroxide	10%	YES
Potassium Nitrate	SAT SOL	YES
Potassium	20%	YES
Permanganate		
Potassium Sulphate	SAT SOL	YES
Pyridine	100%	YES
Sodium Acetate	SAT SOL	NO
Sodium Bromide	SAT SOL	YES
Sodium Carbonate	SAT SOL	YES
Sodium Chlorate	SAT SOL	YES
Sodium Chloride	SAT SOL	YES
Sodium Hydroxide (Caustic Soda)	Concentrate	YES
Sodium Hypochlorite	15%	YES
Sodium Nitrate	SAT SOL	YES
Sodium Nitrite	SAT SOL	YES
Sodium Phosphate	SAT SOL	YES
Sodium Sulphate	SAT SOL	YES
Sodium Sulphide	SAT SOL	YES
Stearic Acid	SAT SOL	YES
Styrene	SOL	Limited
Sulphuric Acid	10%	YES
Sulphuric Acid	50%	YES
Sulphuric Acid	70%	YES
Sulphuric Acid	80%	YES
Sulphuric Acid	98%	YES
Sulphuric Acid	FUMING	NO
Tetrachloroethylene	100%	NO
Thionyl Chloride	100%	NO
Toluene	100%	Limited
Turpentine	100%	Limited
Water	100%	YES
Xylene	100%	Limited
Zinc Sulphate	SAT SOL	YES

Model specification clause

The channel drainage system shall be ACO Qmax® supplied by ACO
Technologies plc. All materials and components within the scope of the system shall be supplied by this manufacturer. The channel units shall be fully compliant with BS EN 1433:2002 with Initial Type Test certification issued by a notified body independent of the manufacturer.

All units shall be of one piece manufacture in recycled Medium Density Polyethylene (MDPE), with metal edge rails attached to the top of the channels.

The standard units shall be installed with the manufacturer's components as required for the scheme. The system shall be installed in accordance with the manufacturer's printed recommendations, and the works carried out as specified on drawings* and in accordance with recognised good practice. Standards of workmanship shall generally be as specified in BS EN 752 and BS 8000:Part 14:1989.

NBS Specification

ACO Qmax® should be specified in NBS Section Q10:170. Assistance in completing this clause can be found in ACO Technologies product entries in NBS Plus or a model specification can be downloaded from www.aco.co.uk. For further assistance, contact the ACO Water Management Design Services Team.

Recycled content

ACO Technologies aim to incorporate as much recycled material or waste material as is practicable in their manufactured products without compromising performance. Typically MDPE materials contain 50% to 100% recycled plastic, ductile iron materials contain 40% to 90% recycled iron and steel products contain 25% to 33% recycled steel.

The total recycled content of each product in the ACO Qmax® system will vary as the proportion of the different materials varies due to channel size and edge rail material and type. As an example, ACO Qmax® 550 channels with Q-Guard ductile iron edges will contain a minimum of approximately 45% by weight recycled material content.

The ACO Qmax® products are themselves intended for a long life with low maintenance, to reduce the need to recycle, but when eventually they are no longer needed, their materials can be readily recycled with a very low risk of pollution to the environment.

Conformity

The ACO Qmax® system is CE marked and fully certified to Load Class F 900 BS EN 1433:2002.

Test certificates and a declaration of conformity are available on request. Please contact the ACO Water Management Design Services Team on 01462 816666 for further information.

BS EN 1433:2002

^{*}complete as appropriate

Notes

ACO Technologies plc

- ACO Water Management Civils + Infrastructure Urban + Landscape
- ACO Building Drainage
- ACO Sport
- ACO Wildlife

ACO Water Management: Civils + Infrastructure

A division of ACO Technologies plc ACO Business Park, Hitchin Road, Shefford, Bedfordshire SG17 5TE

Tel: 01462 816666 Fax: 01462 815895

e-mail Sales: customersupport@aco.co.uk e-mail Technical: technical@aco.co.uk

website: www.aco.co.uk

The ACO Group: A strong family you can depend on.

© March 2013 ACO Technologies plc. All reasonable care has been taken in compiling the information in this document. All recommendations and suggestions on the use of ACO products are made without guarantee since the conditions of use are beyond the control of the Company. It is the customer's responsibility to ensure that each product is fit for its intended purpose, and that the actual conditions of use are suitable. This brochure and any advice is provided by ACO Technologies plc (the Company) free of charge and accordingly on terms that no liability including liability for negligence will attach to the Company or its servants or agents arising out of or in connection with or in relation to this brochure or any such advice. Any goods supplied by the Company will be supplied solely upon its standard conditions of sale, copies of which are available on request. The Company's policy of continuous product development and improvement renders specifications liable to modification. Information provided in this brochure is therefore subject to change without prior notification.

ACO CARES ABOUT THE ENVIRONMENT
Printed on material approved by the Forest Stewardship Council (FSC) who provide a means of assuring that products come from responsibly managed forest.

ISO 9001

ISO 14001 EMS 538781

